PHYS 942 Final Exam

Department of Physics
University of New Hampshire
Prof. J. Raeder, J.Raeder@unh.edu
Name, please write clearly:

Note: Open book (Jackson). 250 points max, 100 are a perfect score! Please write clearly. Show all your steps!

1. (50 points) Consider a power line with a resistance $R_{\text {line }}$ that supplies the power $P_{\text {load }}$ to the load end.
(a) What is the minimum voltage $V_{\min }$ needed at the generator end to supply the power $P_{\text {load }}$ to the load end?
(b) Show that for any voltage $V>V_{\min }$ at the generator end there are two solutions in terms of the current I in the line and the load resistance R that supply $P_{\text {load }}$. Which solution incurs the smallest losses in the power line?
2. (50 points) A particle of mass M and 4-momentum P decays into two particles of mass m_{1} and m_{2}. Use the invariance of scalar products of 4-vectors to determine the the total energy and the kinetic energy of the resulting particles in the rest frame of the decaying particle.
3. (50 points) A light beam of intensity (power/area) I_{0} and frequency ω_{0} directed along the positive x -axis is reflected normally by a perfect mirror moving along the positive x -axis with relativistic velocity v. What is the frequency ω and the intensity I of the reflected light in terms of ω_{0} and I_{0} ?
4. (50 points) Given a uniform beam of charged particles with a linear charge density λ, moving with relativistic speed v and uniformly distributed within a circular cylinder of radius R, what is:
(a) the electric field \mathbf{E}
(b) the magnetic field \mathbf{B}
(c) the energy density of the field
(d) the momentum density of the field
thoughout space, i.e., inside and outside the beam, as observed by a stationary observer?
5. (50 points) Two electrons of velocity v (relativistic) in the lab frame move parallel to each other in the positive x-direction. Assume that at $t=0$ they are located at $x=0$ and $y= \pm d$, respectively. How much are the electrons separated when reaching $x=L$?
