PHYS 942 Final Exam

Department of Physics
University of New Hampshire
Prof. J. Raeder, J.Raeder@unh.edu

PHYS 942
December 14, 2018, 10:30-12:30 am
251 DeMeritt
Name, please write clearly: \qquad

Note: Open book (Zingwall, Jackson). 250 points max, 100 are a perfect score! Please write clearly. Show all your steps!

1. (50 points) Consider a rotating electric dipole p such that the dipole lies in the $x-y$ plane and rotates about the z-axis with angular velocity ω. Calculate $d P / d \Omega$ as a function of distance r and the angle θ between the observer and the z-axis. Hint: You can construct a rotating dipole from two oscillating linear dipoles, which is most conveniently expressed as a complex dipole.
2. (50 points) A particle of mass M and 4 -momentum P decays into two particles of mass m_{1} and m_{2}. Use the invariance of scalar products of 4 -vectors to determine the the total energy and the kinetic energy of the resulting particles in the rest frame of the decaying particle.
3. (50 points) A light beam of intensity (power/area) I_{0} and frequency ω_{0} directed along the positive x -axis is reflected normally by a perfect mirror moving along the positive x-axis with velocity v. What is the frequency ω and the intensity I of the reflected light in terms of ω_{0} and I_{0} ?
4. (50 points) Search light effect: Consider a light bulb that moves past you at relativistic speed v. In the bulb's frame, the light rays emanate isotropically from the bulb. Show that for a light ray that emanates at an angle θ^{\prime} relative to the x -axis from the bulb in the moving frame, in the stationary frame that ray lies at an angle θ to the x -axis, with θ given by:

$$
\cos \theta=\frac{\beta+\cos \theta^{\prime}}{1+\beta \cos \theta^{\prime}}
$$

(hint: L.T. of the ($\omega / \mathrm{c}, \mathbf{k}$) 4-vector.) Draw a sketch of the light rays as seen from the stationary observer. This is called the "relativistic searchlight effect."
5. (50 points) Consider an infinite, circular, uniform ion beam of radius R at reativistic speed v. Calculate the force in the lab frame on a single beam ion located at disrance r ($r<R$) from the centerline of the beam.

