PHYS 942 MIDTERM Exam

Department of Physics
PHYS 942
University of New Hampshire
Prof. J. Raeder, J.Raeder@unh.edu
October 25, 2019, 11:10-12:50 pm
253 DeMeritt

Name, please write clearly: \qquad

Note: Open book (Jackson). 250 points max, 100 are a perfect score! Please write clearly. Show all your steps!

1. (50 points) Consider a rotating electric dipole \mathbf{p} such that the dipole lies in the $x-y$ plane and rotates about the z-axis with angular velocity ω. Calculate $d P / d \Omega$ as a function of distance r and the angle θ between the observer and the z-axis. Hint: You can construct a rotating dipole from two oscillating linear dipoles, which is most conveniently expressed as a complex dipole.
2. (50 points) Rectangular cavity:
(a) Consider the TE mode in a rectangular cavity of dimensions $a \times b \times c$. Calculate the eigenfrequencies assuming perfectly conducting walls.
(b) Calculate the fields for the eigenmode with the lowest frequency, assuming $a<b<c$.
3. (50 points) EM wave penetration: A plane polarized electromagnetic wave of frequency ω is incident with angle I on a flat surface of an excellent conductor ($\mu=\mu_{0}, \epsilon=\epsilon_{b}$, and $\sigma \gg \omega \epsilon_{b}$), which fills the region $z>0$. Consider only linear polarization perpendicular to the plane of incidence as indicated in the figure.

If the incident wave is given by $\mathbf{E}=\mathbf{E}_{i} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}$, show that the magnitude of the electric field inside the conductor is

$$
E_{c}=E_{i} \gamma \cos I e^{-z / \delta} e^{i(k x \sin I+z / \delta-\omega t)}
$$

with $\delta=\sqrt{2 / \omega \mu_{0} \sigma}$ and $\gamma=(1-i) \sqrt{2 \epsilon_{0} \omega / \sigma}$ (note that I capitalized the angle of incidence I to avoid confusion with the complex constant i).
4. (50 points) A dipole antenna of length d with its axis along the z-axis is excited in such a way that the sinosoidal current makes exactly one full wavelength oscillation over the length of the antenna, i.e., $k=2 \pi / d$.
(a) Write down the current density $\mathbf{J}(z)$.
(b) Calculate $\mathbf{A}(\mathbf{x})$ in the radiation zone with no other approximation than $d \ll \lambda \ll r$ (from Jackson, eq. 9.8) and express the result in terms of spherical coordinates (r, θ).
(c) Calculate the magnetic field of the wave.
(d) Calculate the radiated power $d P / d \Omega$.

The identity $2 \sin \alpha \sin \beta=\cos (\alpha-\beta)-\cos (\alpha+\beta)$ will come in handy.
5. (50 points) Group speed: In a medium where the elecrons experience no damping, the dispersion relation can be written as:

$$
k=\frac{\omega}{c}\left[1+\omega_{p}^{2} \sum \frac{f_{j}}{\left(\omega_{j}^{2}-\omega^{2}\right)}\right]
$$

Calculate the group velocity v_{G} and show that $V_{G}<c$ even when the phase velocity is larger than c.

