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1 Introduction

Global modeling of geospace, that is, of the magnetosphere-
ionosphere-thermosphere system, began about 20 years ago
with the first simple magnetohydrodynamic (MHD) models
of the solar wind - magnetosphere interaction [42,48]. It is
thus a relatively young discipline compared to, for example,
the modeling of the atmosphere. However, over this compara-
tively short period enormous progress has been made. While
the first models were two-dimensional, it was soon realized
that the magnetosphere is intrinsically three-dimensional, and
such models appeared soon thereafter [18,55]. The next big
step was the inclusion of electrodynamic ionosphere models
that provided the closure of field-aligned currents (FACs) and
the connection between magnetospheric and ionospheric con-
vection [23,38,61,69,82]. These model extensions followed the
realization that the ionosphere might, at least in part, control
magnetospheric convection, and thus the magnetospheric dy-
namics in general. At this stage, the models were largely used
to reproduce the large scale magnetospheric morphology and to
investigate basic physical processes. However, it was not clear
whether or not the model results and the underlying assump-
tions of magnetohydrodynamics were even correct, although
they seemed to give correct answers for some parameters, for
example the bow shock and magnetopause standoff distance.
The ISTP program brought the first direct comparisons of mo-
del results with in situ measurements [25,26,66]. Since then
there has been a flurry of model-data comparisons; too many to
mention them all here. However, there have been several activ-
ities in which systematic comparisons were made, in particular
the NSF/GEM convection challenge (see [50] and other arti-
cles in that issue) and the NSF/GEM substorm challenge (see
[67] and other articles in that issue.) These studies have been
particularly useful to assess the capabilities and limitations of
current state-of-the-art models, that is, they (and other studies)
have shown that global geospace models have now truly pre-
dictive capabilities. However, they have also shown deficien-
cies in many areas that require continued model development.
Nevertheless, the models have become sufficiently efficient and
sophisticated that they are now considered for use in the appli-
cations branch of space science – operational space weather
forecasting.

In the following we discuss the physical and numerical
foundation of global modeling, the coupling of different re-

gions and processes, and examples of global simulations of
substorm and storm events.

2 Global modeling – things to consider

Ideally, the magnetosphere-ionosphere system should be mod-
eled using the Vlasov equations, i.e., the collisionless Boltz-
mann equations for the plasma species together with Maxwell’s
equations for the fields. Because this is impractical given the
limited computer resources, the magnetohydrodynamic (MHD)
equations are commonly used as the basis of a numerical mo-
del. Although the MHD equations appear relatively simple at
a first glance, the development of efficient and accurate nu-
merical algorithms for their solution is a formidable task that
has not yet come to conclusion. For magnetosphere modeling
the problem is exacerbated by the presence of multiple spatial
and temporal scales. Therefore numerous different approaches
have been developed, and the existing models differ in many re-
spects. However, a number of issues is common to all models,
and we discuss in the following their relevance and the advan-
tages and disadvantages of various approaches.

2.1 Simulation Geometry and Numerical Grids

Any large-scale simulation starts with the choice of a numerical
grid and the associated numerical methods. In the case of global
simulations of Earth’s magnetosphere the simulation bound-
aries should be well within supermagnetosonic flows, i.e., gen-
erally ≥ 18 RE from Earth on the sunward side, ≥ 200 RE in
the tailward direction, and ≥ 50 RE in the transverse directions.
However, these values are only a guide. For example, if the
solar wind magnetosonic Mach number is very low the bow
shock can move to several 10’s of RE upstream, in which case
the sunward boundary must be farther away from Earth to keep
the bow shock within the simulation domain.

There is a variety of choices for numerical grids. However,
none of them is optimal and they all have their distinct advan-
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Fig. 1. Several common choices for numerical grids: (a) a uniform

Cartesian grid, (b) a stretched Cartesian grid, (c) a non-Cartesian

grid with Cartesian topology, (d) a structured adaptive grid, (e) a un-

structured grid

tages and disadvantages. Consequently, virtually all possible
grid approaches have been used to some extent.

Uniform Cartesian grids, like the one shown in Fig. 1a pro-
vide lowest programming overhead, lowest computing over-
head, essentially no memory overhead, easiest parallelization,
and near perfect load balancing for parallelized computation
[55,89,56]. The major drawback is that such grids are not
adapted to the solution. Consequently computational resources
are wasted where they are not needed (in regions where the so-
lutions are smooth) while other regions are under resolved, for
example, sharp gradients and shocks.

Stretched Cartesian grids like the one shown in Fig. 1b can
be better adapted to the solution, while maintaining essentially
all of the advantages of a uniform Cartesian grid [61,84]. In the
case of global magnetospheric simulations such a grid can ac-
tually be quite well adapted, providing high resolution in the X
(sun-Earth) direction at the bow shock and the magnetopause,
high resolution in the Z direction in the tail plasma sheet, and
substantially lower resolution almost everywhere else. Con-
sider a typical simulation box that is 300×100×100 R3

E =

3×106 R3
E large. At a uniform 0.25 RE resolution such a grid

would require 1.92×108 cells, whereas a stretched Cartesian
grid can achieve a 0.25 RE resolution in the critical parts of the
magnetosphere with ∼1-2×106 cells. Thus, a stretched Carte-
sian grid requires about two orders of magnitude less computa-
tional resources. Such a grid is used, for example, in the UCLA
code [61,69,65].

Grids as shown in Fig. 1c (non-Cartesian, but with Carte-
sian topology) are irregular but still with a regular connectivity
between grid cells. This allows the grid better to be adapted to
the solution with only small overhead in computation, however,
post-processing and visualization becomes significantly more
difficult. The Lyon-Fedder-Mobarry (LFM) code [49,24] uses
such a grid.

A relatively new gridding strategy is based on overlay-
ing grid patches with increasingly smaller resolution, such as

shown in Fig. 1d. This approach is often call “structured adap-
tive mesh refinement” (SAMR) when combined with the dy-
namical adaptation of the grid to the solution, that is, grid
patches are created and destroyed as the solution evolves in
time [10,9]. The ratio of the gridsize between different levels

in the grid hierarchy is a fixed integer (usually 2 or 4), and
so is the timestep. Different refinement strategies are possible,
like a block structure in which all patches are of the same size
and ordered in a tree (for example, the BATS‘R’US code of the
Michigan group [60,29]). SAMR promises the most accurate
solutions for a given number of grid cells. However, SAMR
incurs substantial programming and computer overhead. Par-
allelization and load balancing of SAMR codes is extremely
difficult.

Unstructured grids, like the one shown in Fig. 1e are suit-
able for finite element (FE) and finite volume (FV) methods.
They are often constructed from triangles (in 2d) or tetrahe-
drons (in 3d), but other basic building blocks are also possi-
ble. Despite their geometrical flexibility, unstructured grids are
rarely used in plasma simulation because of their high program-
ming and computational overhead and because of the difficulty
to parallelize such codes.

2.2 The Governing Equations

Although the magnetohydrodynamic (MHD) equations are of-
ten under scrutiny when applied to space plasmas, experience
has proven that they are adequate in many situations where
the spatial scale of interest is larger than the ion gyroradius
and the ion inertial scales, and the temporal scale is longer
than the ion gyroperiod. In assessing the validity of the MHD
equations one must consider that they are conservation equa-

tions. Specifically, MHD describes the conservation of mass,
momentum, energy, and magnetic flux. As far as the plasma
is concerned the only significant underlying assumption is that
the velocity distribution functions of the plasma constituents
are only a function of |v − vd | in phase space, where vd is
the drift speed (first moment of the distribution). This is triv-
ially fulfilled for a Maxwellian distribution and causes all mo-
ments higher than the scalar pressure to vanish (in the case of
a Maxwellian distribution), or at least to decouple [8]. Viola-
tions of the f (v− vd)= f (|v− vd |) assumption are mostly mild
in large parts of the magnetosphere. However, they can be sig-
nificant in the ring current, in regions of strong diffusion, and
possibly in the plasma sheet. In places where such deviations
from a symmetric distribution occur higher order moments, for
example the heat flux tensor, come into play. The correct clo-
sure of the equation set becomes then becomes an issue [34,35].
In some cases it is possible to augment the MHD equations ap-
propriately (for example by adding anomalous diffusion terms);
however, in other cases (for example, the ring current) a differ-
ent formalism is indicated [90].

The MHD equations can be written in different forms,
which are all mathematically equivalent, but generally lead
to different numerical methods. In the following, the symbols
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have their usual meaning, e.g., B and E are the magnetic and
electric field, respectively, v is the plasma velocity, ρ is the den-
sity, p is the pressure, j is the current density, η is a resistivity,
I is the unit tensor, and γ is the ratio of specific heats.

Non-conservative (primitive variable) formalism:

∂ρ

∂t
= −∇ · (ρv) (1a)

∂v

∂t
= −(v ·∇)v− 1

ρ
(∇p− j×B) (1b)

∂p

∂t
= −(v ·∇)p− γp∇ ·v (1c)

∂B

∂t
= −∇×E (1d)

∇ ·B = 0 (1e)

E = −v×B+ηj (1f)

j = ∇×B (1g)

The primitive variable formulation leads to numerical schemes
that do not strictly conserve momentum and energy, even in
the hydrodynamic case. Such schemes do not guarantee cor-
rect shock speeds and correct jump conditions at discontinu-
ities [41]. Furthermore, the convective derivative (v ·∇) is dif-
ficult to treat numerically. Although the use of the primitive
variable formulation leads to algorithms with low memory re-
quirements, its use should be avoided because much better ap-
proaches are available.

Full conservative formalism:

∂ρ

∂t
= −∇ · (ρv) (2a)

∂ρv

∂t
= −∇ ·

{

ρvv+ I(p+
B2

2
)−BB

}

(2b)

∂U

∂t
= −∇·

{

(U + p)v+E×B
}

(2c)

∂B

∂t
= −∇×E (2d)

∇ ·B = 0 (2e)

E = −v×B+ηj (2f)

j = ∇×B (2g)

U =
p

γ− 1
+

ρv2

2
+

B2

2
(2h)

The full conservative formulation allows the application
of conservative finite difference schemes that strictly conserve
mass (ρ), momentum (ρv), energy (U), and magnetic flux. This
formulation is therefore always preferable. It may lead, how-
ever, to difficulties in low β regions (β = p/(B2µ0) is the ratio
of the plasma pressure to the magnetic field pressure) where
the pressure becomes the difference of two large numbers. Nu-
merical errors can then cause nonphysical negative pressures.
A semi-conservative form of the equations may then be more
appropriate.

Gas dynamic conservative (semi-conservative) formalism:

∂ρ

∂t
= −∇ · (ρv) (3a)

∂ρv

∂t
= −∇ · (ρvv+ pI)+ j×B (3b)

∂e

∂t
= −∇ · ({e+ p}v)+ j ·E (3c)

∂B

∂t
= −∇×E (3d)

∇ ·B = 0 (3e)

E = −v×B+ηj (3f)

j = ∇×B (3g)

e =
ρv2

2
+

p

γ− 1
(3h)

The semi-conservative formulation allows for difference
schemes that numerically conserve of mass (ρ), momentum
(ρv), and plasma energy (e), but with no strict conservation of
total energy. On the other hand, low β regions pose no diffi-
culty. This approach can be combined with a full conservative
scheme by integrating both energy equations (2c) and (3c) and
using a ‘β switch’, as suggested by Balsara and Spicer [7].

The above equations are normalized with arbitrary nor-
malization factors (3 of them are independent.) This is pos-
sible because the MHD equations have no intrinsic length or
time scale. This changes, however, when Earth’s dipole is in-
troduced, which essentially provides the normalization of the
magnetic field.

Frequently the ideal (that is, non-dissipative) MHD equa-
tions need to be augmented with a term for anomalous re-
sistivity η. While any numerical code produces numerical re-
sistivity, enough to enable magnetic reconnection, in some
circumstances this may not be sufficient. A notable exam-
ple is the dynamical evolution of substorms [68]. Although
the precise mechanisms that cause anomalous diffusion are
not well known, it is generally believed that anomalous dif-
fusion is a function of the local current density, thus a suitable
parametrization is given by, for example:

η = α j′2 if j′ ≥ δ, 0 otherwise (4)
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Fig. 2. Initial magnetic field constructed with a mirror dipole

j′ =
| j|∆

|B|+ ε
(5)

where j′ is a normalized local current density, ∆ is the grid
spacing, and δ and α are empirical constants [65].

2.3 Boundary and initial conditions

The outer boundary conditions of the simulation domain are
relatively straight-forward. However, the inner boundary, where
the magnetospheric field meets the ionosphere, is much more
involved.

Sunward side: The boundary conditions can be either arbi-
trary (fixed or time dependent), or measured solar wind data
can be used. However, solar wind data are usually limited to
one (or at best a few) solar wind monitors, thus there is very
little knowledge of the true 3d structure of the solar wind. This
leads to a problem with Bx: The three-dimensional structure of
the solar wind needs to be known because

∇ ·B = 0 ⇐⇒ n · (Bupstream −Bdownstream) = 0, (6)

across any discontinuity in the IMF. This implies that Bx = Bn

cannot change if solar wind parameters are independent of Y
and Z (simple extrapolation). A possible solution is to find the
predominant normal vector n in the sense that all solar wind
discontinuities during some time period are only a function of
n. This is difficult with a single solar wind monitor; however,
boundary normal methods (for example, the minimum variance
method [77,78]) can be applied.

On all other sides: Here, free flow conditions can be applied,
i.e.,

∂Ψ

∂n
= 0 (7)

for all variables Ψ, except for the normal magnetic field which
must be derived from the ∇ ·B = 0 condition and which must
be consistent with the numerical scheme.

Magnetic field initial conditions: The magnetic field can be
initialized by the superposition of dipole with mirror dipole to
create Bx = 0 surface sunward of Earth (see Fig. 2). The field on
sunward side is then replaced with the initial solar wind field,
providing a ∇ ·B = 0 transition.

Plasma initial conditions: The initial plasma conditions are
usually given by a cold (5000 0K), tenuous (0.1cm−3), uniform
plasma. From the start of the simulation it takes about 0.5-1
hour real time for the magnetosphere to form. However, the
magnetosphere can have a substantial memory of prior condi-
tions (possibly many hours), thus it is advisable to provide at
least a few hours lead time from the start of a simulation up to
a specific event.

2.4 MHD numerics

Time differencing Consider the model equation:

∂U

∂t
=−∇ ·F(U) (8)

which is representative for the plasma part of the conservative
or semi-conservative MHD equations (2,3).

Fairly simple difference schemes can be applied to the time
derivative with second order accuracy (that is, numerical errors
are proportional to ∆t2; more on that later), for example, the
explicit predictor-corrector scheme:

Un+ 1
2 = Un − 1

2
∆t∇ ·F(Un),

Un+1 = Un −∆t∇ ·F(Un+ 1
2 ) , (9)

or the explicit leap-frog scheme:

Un+1 =Un−1 − 2∆t∇ ·F(Un,Un−1) . (10)

These schemes are generally accurate enough, sufficiently
simple, and require moderate storage. However, they suffer
from a stability requirement (the Courant-Friedrichs-Levy, or
CFL criterion [76]) that limits the stable time step to ∆tmax:

∆tmax ≤ δ
min(∆x,∆y,∆z)

|v|+ vMS

, (11)

where δ is a constant of the order O(1). The CFL criterion can
be very restrictive because ∆t < ∆tmax must be satisfied every-
where in the simulation domain, not just locally. In some parts
of the magnetosphere the Alfvén speed can become very large,
severely limiting the stable time step. It is possible to apply the
‘Boris correction’ [13,17] or some variant thereof which lim-
its the Alfvén speed. This essentially entails the simultaneous
reduction of the J×B and the perpendicular (to the magnetic
field) component of the ∇p force in regions where the Alfvén
speed would be too high. A judicious choice of the reduction
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Fig. 3. Variable placement of the numerical fluxes

factor allows for much larger time steps without any adverse
effects on the solutions.

Implicit time differencing schemes, where the right hand
side involves variables at time level n+ 1:

Un+1 =Un −∆t∇ ·F(Un+1,Un,Un−1, . . .) (12)

can be unconditionally stable, but generally require the solution
of large linear systems, which is computationally very expen-
sive and generally impractical.

Spatial discretization The spatial discretization of the MHD
equations is much more difficult than the time discretization.
There are basically four different approaches: a) finite differ-
ences (FD), b) finite volume (FV) methods, which usually re-
duce to FD methods on Cartesian grids, c) finite element (FE)
methods, and d) spectral methods.

Since FD methods are most widely used in global magne-
tosphere models we restrict the discussion to these in the fol-
lowing. However, many FD concepts carry over to the other
methods as well. More specifically, we focus on the discussion
of conservative difference schemes since these are most suitable
for global simulations.

Consider again the model equation, but this time with em-
phasis on the right hand side:

∂U

∂t
=−∇ ·F(U) (13)

where U is some variable and F(U) the flux associated with
that variable. Introduce a regular Cartesian grid (in 2d) where
the cell centers are at xi = i∆x, i = 1, . . . and y j = j∆y, j = 1, . . .
and the cell corners are at (xi+1/2, j+1/2,yi+1/2, j+1/2). Discretize
the right hand side of equation (13) as:

∂U

∂t
= − ( f

i+ 1
2 , j

(U)− f
i− 1

2 , j
(U))/∆x

− ( f
i, j+ 1

2
(U)− f

i, j− 1
2
(U))/∆y , (14)

where we introduced the numerical fluxes f
i+ 1

2 , j
and f

i, j+ 1
2
,

which are functions of the grid values:

f
i+ 1

2 , j
= Gx(. . . ,Ui−1, j,Ui, j,Ui+1, j, . . .) (15)

f
i, j+ 1

2
= Gy(. . . ,Ui, j−1,Ui, j,Ui, j+1, . . .) , (16)

and which must be consistent with the physical flux F(U) in
the following sense:

G(U, . . . ,U,U, . . . ,U) = F(U) . (17)

Writing equation (13) in integral form:

∂

∂t

∫
V

UdV =
∫

S
Fds , (18)

where V is an arbitrary, simply connected volume, S its surface,
and s its surface normal, it is now easy to see that the variable U

is globally conserved. In Fig. 3 this volume is taken to be one
cell (i, j). Considering the cell that contains Ui, j, any change
of Ui, j must be opposite to the sum of the changes of the four
surrounding cell variables Ui−1, j, Ui+1, j, Ui, j−1, Ui, j+1 caused
by the flow of U through the cell boundaries. Thus, the sum
of ∂Ui, j/∂t over the entire grid is zero, except for the fluxes
through the physical boundaries.

Using the discretization (14) only guarantees the global
conservation of the quantity U . The accuracy of the approxima-
tion is determined by the construction of the numerical fluxes
f
i+ 1

2 , j
and f

i, j+ 1
2
.

A few popular schemes are listed in the following; for sim-
plicity we drop the second dimension:

• The second order central scheme:

f
i+ 1

2
=

1

2
(F(Ui)+F(Ui+1)) (19)

• The fourth order central scheme:

f
i+ 1

2
=

7

12
(F(Ui)+F(Ui+1))−

1

12
(F(Ui−1)+F(Ui+2))

(20)
• The Lax scheme:

f
i+ 1

2
=

1

2
(F(Ui)+F(Ui+1))−

1

2
(Ui+1 −Ui) (21)

• The two step Lax Wendroff scheme: Use Lax scheme for
predictor, and second order central for corrector.

• The Rusanov scheme:

f
i+ 1

2
=

1

2
(F(Ui)+F(Ui+1))

− 1

4
(|vi|+ |vi+1|+ ci+ ci+1)(Ui+1 −Ui) (22)

where c is the sound speed.
• The Godunov type schemes solve a Riemann problem (i.e.

the decay of a step function into waves) at the cell interface
i+ 1

2
and compute the fluxes directly from the wave propa-

gation (see e.g. [93,20] and references therein.) This is very
accurate for gas-dynamics, but difficult for MHD because
the system of equations involves a degenerate eigenvector
related to ∇·B = 0 [19].
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Error terms The error terms associated with the spatial dis-
cretization can be found via a Taylor series expansion:

∆x
∂U

∂t
= −( f

i+ 1
2
− f

i− 1
2
)

+ a1(∆x)2 ∂2

∂x2
F(U)+ b1(∆x)3 ∂3

∂x3
F(U)

+ a2(∆x)4 ∂4

∂x4
F(U)+ b2(∆x)5 ∂5

∂x5
F(U)+ . . . .(23)

The coefficients a1, b1, etc. depend of course on the choice
of the numerical flux scheme. The error terms associated with
even derivatives cause numerical diffusion, that is, they tend to
smear out the solution, in particular at discontinuities where
the derivatives of the solution become large. Conversely, the
error terms associated with odd derivatives cause numerical
dispersion, which manifests itself mostly by ripples and un-
der/overshoots near discontinuities. Dispersion is in a certain
sense the worst enemy, because it may lead to nonphysical so-
lutions, such as negative density or pressure.

Ideally, one wants to construct numerical fluxes that mini-
mize the error terms. The order of a scheme is defined as the
smallest order of the derivative with non-vanishing coefficient
minus one, for example, a third order scheme will only have er-
ror terms proportional to the fourth and higher derivatives of the
solution. First order schemes are thus primarily diffusive (with
second order diffusion terms). All symmetric central schemes
have no diffusion at all, that is, all a terms vanish. Although that
may seem a desirable property, the dispersion of these schemes
makes them virtually useless for any application that involves
shocks, such as the magnetosphere, because of extreme over-
and under-shoots near the shock and other discontinuities.

A more desirable property of the numerical scheme is there-
fore monotonicity. A scheme is called monotone if it lets no new

extrema develop in the solution. Of course, there may be phys-
ically relevant extrema in the solution; however, one can show
that, at least in 1d, the number of extrema is non-increasing.

Unfortunately, Harten’s Lemma [32] states that a monotone
scheme is at most first order accurate. Thus, the price for glo-
bal monotonicity seems to be the large diffusion of first order
schemes, such as the Lax or the Rusanov scheme. Harten (and
others) also proposed the solution to this dilemma, which es-
sentially amounts to the hybridization of the numerical fluxes.
Instead of using one and the same scheme in the entire domain,
a first order scheme is employed where the gradients in the so-
lutions are large, while in those regions where the solution is
smooth a higher order scheme is used. In its simplest form the
numerical flux is then computed as follows:

f
i+ 1

2
= θ

i+ 1
2

f h

i+ 1
2

+(1−θ
i+ 1

2
) f l

i+ 1
2

(24)

where f l is a low order (for example Rusanov) flux, and f h

is a high order (for example second or fourth order central)
flux [33,95]. The conservation properties of the scheme are pre-
served and do not depend on which fluxes are used and how

they are combined. Note that flux hybridization is not possible
for the non-conservative equations.

The switch function θ acts as a Flux Limiter and is gen-
erally a function of gradients in the solution, e.g., a func-
tion of the grid values surrounding i + 1

2
. The hybridiza-

tion procedure is not always written in the above stated
form and the term Flux limiter is often used in a some-
what different, but related context [37]. However, the prin-
ciple is always the same. There is no optimal choice for
a flux limiter, and numerous schemes have been developed.
Most notable among them are the original hybrid method [33],
Flux Corrected Transport (FCT) [14,94,95,21], Total Variance

Diminishing (TVD) schemes [31,81,91,92], Essentially Non-

oscillatory (ENO) schemes [43,39], and the Van Leer flux lim-
ited schemes [85–87].

Magnetic flux conservation A particular difficulty of MHD
simulations (as opposed to hydrodynamic simulations) is the
conservation of magnetic flux, expressed as the Maxwell equa-
tion ∇·B=0. ∇·B=0 is an initial condition since ∇·B is con-
served by Faraday’s law:

∇ · ∂B

∂t
=

∂(∇·B)
∂t

=−∇ ·∇×E = 0 (25)

Most numerical schemes do not a priori preserve ∇·B. For such
schemes the accumulation of ∇·B can lead to serious errors, in
particular spurious parallel acceleration, wrong magnetic topol-
ogy (field lines that are not closed), and significant errors in
the shock jumps [16,83]. There are a few methods to “clean”
the magnetic field of monopoles, for example the projection
method:

∇2Ψ =−(∇·B) (26)

produces a monopole potential that can be used as a correction:

B′ = B+∇Ψ (27)

Note that the projection method requires the solution of a Pois-
son equation on the global grid which can be quite costly. Be-
cause the numerical solution of this equation has errors as well,
the projection method can only achieve ∇·B = 0 to a certain
order in the gridspacing [83].

An alternative approach is to modify the MHD equations in
such a way that ∇·B becomes a convected quantity [60,29]:

d(∇·B)
dt

= 0 (28)

This approach does not guarantee any limit on the accumulation
of ∇·B and may also lead to the violation of the shock jumps
[83].

A preferable approach is to use a scheme that conserves
magnetic flux a priori. Such a scheme was first introduced by
Evans and Hawley [22] in the context of MHD simulations.
Flux conservation is achieved by using staggered grids for the
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Fig. 4. Variable placement on a staggered grid for magnetic flux con-

serving integration of Faraday’s law. The arrows along the cell edges

indicate the electric field contributions in the magnetic field time inte-

gration step

magnetic and electric field, such that the magnetic field compo-
nents are placed on the center of cell faces:

(Bx)i+ 1
2 , j,k

, (By)i, j+ 1
2 ,k

, (Bz)i, j,k+ 1
2
,

and the electric field (the numerical flux for the B integration)
on the centers of the cell edges:

(Ex)i, j+ 1
2 ,k+

1
2
, (Ey)i+ 1

2 , j,k+
1
2
, (Ez)i+ 1

2 , j+
1
2 ,k

,

as indicated in Fig. 4. The magnetic field time integration be-
comes then particularly simple, for example:

∂

∂t
(Bx)i+ 1

2 , j,k
= (29)

{(Ey)i+ 1
2 , j,k+

1
2
− (Ey)i+ 1

2 , j,k− 1
2
}/∆z

−{(Ez)i+ 1
2 , j+

1
2 ,k

− (Ez)i− 1
2 , j+

1
2 ,k

}/∆y .

and analogously for By and Bz. By advancing the field compo-
nents in this way on all 6 cell faces and summing up it follows:

∂

∂t

∫ ∫
cell

Φd f = ∆y∆z(
∂Bx

∂t
)

i− 1
2

+∆y∆z(
∂Bx

∂t
)

i+ 1
2
+∆x∆z(

∂By

∂t
)

j+ 1
2
+ . . .

= {((Ey)i+ 1
2 , j,k+

1
2
− (Ey)i+ 1

2 , j,k+
1
2
)+

((Ey)i+ 1
2 , j,k− 1

2
− (Ey)i+ 1

2 , j,k− 1
2
)+ . . .}∆x∆y∆z = 0 , (30)

and thus the combined magnetic flux Φ through all 6 cell faces
remains unchanged (Φ = const.) during the time integration, as
required by equation (25). Note that the field can be divergence-
free initialized by using a vector potential A in place of E [22].

Coordinate transformation for stretched Cartesian grids It
is particularly simple to integrate the equations on a stretched
Cartesian grid. Let the grid coordinates be given by analytic
functions of the grid indices (i, j,k), that is: x = x(i), y=y( j),
z=z(k), then:

∂

∂x
F(x,y,z) ==

∂F

∂i

∂i

∂x
=

∂F

∂i

(

∂x

∂i

)−1

, (31)

and analogously for y and z derivative. The derivatives on the
regular equidistant (i,j,k) grid need then only be multiplied with
the appropriate geometric factors:

∂

∂x
F(x,y,z) =

∂F

∂i

(

∂x

∂i

)−1

(32)

∂

∂y
F(x,y,z) =

∂F

∂ j

(

∂y

∂ j

)−1

(33)

∂

∂z
F(x,y,z) =

∂F

∂k

(

∂z

∂k

)−1

. (34)

3 Coupling of different regions and processes

Modeling the magnetosphere extends beyond solving the MHD
equations. At a minimum, the MHD model needs an inner
boundary at which FACs generated in the magnetosphere close
through the resistive ionosphere. This process is commonly
implemented such that the MHD calculation only extends to
within 3-4RE from Earth. Within that boundary the FACs are
mapped along dipole field lines into the ionosphere. At the
ionosphere end a potential equation is solved on a sphere (or
a section thereof) to yield the ionospheric convection potential
[23]. The potential is then mapped back to the inner boundary
of the MHD calculation where it is used as boundary condition
for the flow and field integration (v = (−∇Φ)×B/|B|2). This
mapping is illustrated in Fig. 5.

Such a mapping typically covers latitudes from ∼580 to
900. In the region between the ionosphere and the inner bound-
ary of the magnetosphere the MHD equations are not solved.
This is partly necessitated by the high Alfvén speeds in this re-
gion, and also by the fact that the relevant processes on these
field lines are not well described by the MHD equations, but
are for the most part of a kinetic nature.

The relevance of the ionosphere for magnetospheric dy-
namics is best explained by the limiting cases. In the case of
a vanishing ionospheric potential Φ, equivalent to infinite iono-
spheric conductance, the electric field and the convection veloc-
ity will also vanish (Φ = 0 −→ E = 0 −→ v = 0). Thus, there
is no convection in the ionosphere and field lines are tied. Ulti-
mately (on a time scale of less than one hour) magnetospheric
convection has to cease as well. In the opposite case the con-
ductance of the ionosphere is zero which means that no cur-
rent can flow from the magnetosphere through the ionosphere
( j‖ → 0). In that case field lines slip free through the ionosphere
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Fig. 5. Schematic of the field line mapping between the magnetosphere

and the ionosphere

and the Earth (because the solid Earth’s conductivity is small).
Thus, magnetospheric convection can proceed uninhibited.

In reality the ionosphere has a finite conductance and field
lines are dragged through the ionospheric plasma, dissipat-
ing energy that must be supplied from the magnetosphere via
Poynting flux [58,79]. Thus, the ionosphere influences magne-
tospheric convection, and the primary controlling factor is the
ionospheric conductance.

The magnetosphere-ionosphere coupling can be described
either in a mechanical way, that is by calculating the stresses
and motions of the ionospheric constituents (ions, electrons,
and neutrals [80]), or by treating it as an electric circuit [88].
The latter approach is far easier to implement. Field-aligned
currents are calculated at the magnetospheric boundary and
used as input to the ionospheric potential equation. The polar
ionosphere can be treated as a 2d shell to a very good approxi-
mation (because field lines are nearly radial), thus:

∇ ·Σ ·∇Φ =− j‖ sin I (35)

with the boundary condition Φ=0 at the magnetic equator. Be-
cause the ionosphere is a magnetized and partially ionized
plasma the ionospheric conductance is a tensor [80], given by:

Σ=

(

Σθθ Σθλ

−Σθλ Σλλ

)

(36)

Σθθ =
ΣP

sin2 I
, Σθλ =

ΣH

sin I
, Σλλ = ΣP (37)

where ΣH is the Hall conductance, ΣP is the Pedersen conduc-
tance, θ is the magnetic latitude, λ is the magnetic longitude,
and I is the magnetic field inclination.

The potential calculation requires the specification of the
ionospheric Hall and Pedersen conductance. These can either
be assumed to be uniform (not a good assumption), be com-
puted using empirical formulations, or be computed using a
full-fledged ionosphere-thermosphere model.

The conductances are proportional to the ionospheric elec-
tron density (essentially E-region), which in turn is primarily
given by solar EUV irradiance and precipitation of magneto-
spheric electrons. The conductance contribution of the former
can be easily parameterized from measurements, for example
as [54]:

ΣH = F0.53
10.7 (0.81cosχ+ 0.54cos1/2 χ) (38)

ΣP = F0.49
10.7 (0.34cosχ+ 0.93cos1/2 χ) (39)

where F10.7 is the solar radio flux (used as a proxy for solar
EUV radiation) and χ is the solar zenith angle. Magnetospheric
electron precipitation is either diffuse (pitch angle scattering of
hot magnetospheric electrons), or discrete (accelerated auroral
electrons.) The former can be parameterized by:

FE = ne(kTe/2πme)
1
2 , E0 = kTe (40)

where Te and ne are the magnetospheric electron temperature
and density, respectively. FE is the energy flux, and E0 is the
mean energy of the precipitating electrons. Discrete electron
precipitation can be modeled using the Knight relation [40,59]:

∆Φ = max(0,− j‖)/K (41)

K =
e2ne√

2πmekTe

(42)

FE = ∆Φ‖ j‖ , E0 = e∆Φ‖ (43)

where ∆Φ is the parallel potential drop on an auroral field line.
K−1 can be viewed as the resistance of the field line.

The Pedersen and Hall conductances can then be computed
using empirical formulas, for example [74]:

ΣP = [40E0/(16+E2
0)]F

1/2
E (44)

ΣH = 0.45E
5/8
0 ΣP (45)

or by feeding the precipitation parameters, along with the
potential, into a large-scale ionosphere-thermosphere model
which then computes the conductances self-consistently from
the electron-neutral collisions. The latter approach has re-
cently been taken by combining the UCLA magnetosphere-
ionosphere (MI) code with the NOAA Coupled Thermosphere
Ionosphere Model (CTIM, [28,70]).

The CTIM part of the coupled model is a global multi-fluid
model of the thermosphere–ionosphere system with a long her-
itage [28]. CTIM solves both neutral and ion fluid equations
self-consistently from 80 to 500 km for the neutral atmosphere
and from 80 to 10,000 km for the ionosphere on a spherical grid
with 2◦ latitude resolution and 18◦ longitude resolution. The
thermosphere part solves the continuity equation, horizontal
momentum equation, energy equation, and composition equa-
tions for the major species O, O2, and N2 on 15 pressure lev-
els. The ionosphere model part solves the continuity equations,
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ion temperature equation, vertical diffusion equations, and hor-
izontal transport for H+ and O+, while chemical equilibrium is
assumed for N+

2 , O+
2 , NO+, and N+. The horizontal ion motion

is governed by the magnetospheric electric field. The coupled
model includes about 30 different chemical and photo-chemical
reactions between the species. CTIM’s primary inputs are the
solar UV and EUV fluxes (parameterized by the solar 10.7 cm
radio flux), the tidal modes (forcing from below), auroral pre-
cipitation, and the magnetospheric electric field, each of which
is usually taken from parameterized empirical models. CTIM
provides several outputs that are of prime importance for space
weather, for example, global two- and three-dimensional iono-
sphere and thermosphere state fields, like electron density, neu-
tral density, neutral wind, chemical composition, NmF2, hmF2,
and total electron content (TEC). A more thorough description
of CTIM, including the detailed equations, reaction rates, and
examples can be found in [28].
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Fig. 6. Schematic showing the coupling between the UCLA

magnetosphere-ionosphere model with the NOAA Coupled Thermo-

sphere Ionosphere Model (CTIM)

The coupling of the models is schematically shown in Fig-
ure 6. The MI model provides the electron precipitation param-
eters and the magnetospheric field-aligned currents (FACs.) In
turn, CTIM provides the ionospheric conductance and the iono-
spheric dynamo current to the MI model. Thus, as far as the MI
model is concerned, we replace empirical conductance calcula-
tions [74] that was used in most prior studies with first-principle
calculations and also account for the ionospheric dynamo ef-
fect. The latter effect is probably of minor importance in most
situations, but may become significant during storm recovery
[73]. With this coupling, CTIM is also driven with more re-

alistic magnetospheric inputs and depends on fewer empirical
parameters.

4 Examples: Substorms and storms

An important aspect of any kind of numerical modeling is to
ensure the correctness of the model. Here, two issues come
into play. First, one needs to verify that the model solves the
underlying equations correctly. However, because numerical
models compute only approximations to the underlying equa-
tions, the issue rather becomes to quantify the approximation
errors. Ideally, this can be done by comparing model results
with known analytic solutions. For global models, however, this
approach has limitations because there are no known analytic
solutions that even come close to the true complexity of the
magnetosphere. Thus, much simpler analytic tests are usually
conducted, for example, shock tube problems, magnetic field
convection problems, equilibrium solutions, and checks of the
conservation properties of the code (mass, momentum, energy,
and magnetic flux). Such tests give some idea of how well an
algorithm works, however, because of their simplicity they still
leave open the possibility of serious errors in the simulation
of the complex magnetosphere. The second issue involves the
validity of the underlying equations themselves. Here, limited
comparisons can be made with more sophisticated local mod-
els. For example, one can compare reconnection geometries
and reconnection rates with those predicted by kinetic models.
However, such comparisons are problematic because it is virtu-
ally impossible to set up test cases in a way that the boundary
conditions for either model are the same. On the other hand,
global models can be run with measured solar wind and IMF
data as input and their results can then be compared with in

situ observations. By doing so, both of the two issues above
are addressed at the same time. If the simulation results match
the in situ data well one can be confident that the equations
are sufficient to describe the phenomena and that the numerical
solution is sufficiently accurate. Inevitably, there will also be
differences found between the simulation results and the data.
Careful analysis of these differences, together with our theo-
retical understanding of the physical processes involved, will
usually show if they are the result of numerical errors or the
result of deficiencies in the underlying equations and assump-
tions. For example, the lack of ring current formation in global
magnetosphere models is clearly caused by the simplifications
inherent in the MHD equations which neglect the drift physics
of the more energetic plasma populations. On the other hand,
excessive reconnection rates may be the result of numerical ef-
fects like limited resolution or numerical diffusion.

Global geospace modeling is therefore most powerful if
done in conjunction with data analysis. Very often it is impos-
sible to draw solid conclusion from single (or a few) spacecraft
observations. For example, a spacecraft may observe some key
signatures of reconnection in the tail; however, that is not proof
that reconnection actually occurs because other processes could
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produce indistinguishable signatures. This is the essence of cur-
rent debates about the nature of substorms [45,53,6,5]. On the
other hand, a simulation alone, showing reconnection, proves
nothing because the simulation may simply be wrong for a va-
riety of reasons, for example bad input data, lack of resolution,
too much dissipation, or missing physics. A typical example is
the question of whether or not the magnetotail closes during
extended periods of northward IMF [62,30,63]. Here, different
models give different answers, and only a study that includes
both simulations and data can be convincing. Furthermore, it
is essential to test the limits of any given model, and the only
possible ground truth are the observations. Global models dis-
tinguish themselves here from local models because they are
actually testable by running them with measured input data and
comparing the results with in situ observations. Local models,
on the other hand, are virtually not testable because the bound-
ary conditions are not precisely known.

That said, we compare two simulations – run with measured
solar wind input – and compare the results with data. These
two simulations address key issues in magnetospheric research:
substorms and storms.

4.1 Substorms

The substorm of November 24, 1996, with onset at ∼2230 UT
was chosen as a “GEM challenge” event because it was a typ-
ical isolated substorm following an extended period of magne-
tospheric quiet [67].

Figure 7a shows the IMF and solar wind data for the pe-
riod of interest. After an extended period of northward IMF the
IMF turns southward at around 2100 UT. Over the following
90 minutes the substorm growth phase commences until the
expansion phase onset occurs around 2230 UT. It is not clear
from the data (see below) whether the onset is triggered by
the IMF northward turn [51] around this time; the simulation
shown here indicates that this is not the case.

Figure 7b shows ground magnetometer data from the IM-
AGE chain compared with results from the simulation. The
simulation captures the essence of the onset; however, the
growth phase electrojets are stronger in the simulation, the on-
set is weaker, and the expansion phase is shorter.

Figure 8A compares, among other things, the polar cap
magnetic flux from the simulation with estimates from Polar
VIS data. Both the simulation and the data show an increase
during the growth phase; however, the data indicate a larger sat-
uration value. The beginning of the decrease coincides roughly
with the expansion phase onset.

Figure 8B compares the IMP-8 magnetic field observations
from the middle tail (around (-36,-3,10) RE in the northern
lobe) with the simulation results. The lobe magnetic field is a
good indicator for flux and energy storage in the tail. Although
the results agree qualitatively, there are significant quantitative
differences. First, the loading is delayed in the simulation, and
second, it is weaker than in the observed values. This indicates
that there are (despite other correlations that look good) still

significant discrepancies in the tail dynamics during the growth
phase, similar to the ones observed in the growth phase electro-
jets. On the other hand, the unloading looks strikingly similar,
except for a small time delay in the simulation.

Figure 9a shows the comparison with Geotail data. Geotail
was also located in the middle tail ((-25,-8,-3) RE in GSE coor-
dinates) but close to, or in the plasma sheet. Since, whenever a
spacecraft is close to a discontinuity or a sharp gradient, even
a small displacement of the spacecraft can cause large changes
in the observed values, we bracket the observations by taking
time series from the simulation at ±2RE from Geotail’s actual
position to take this effect into account. Clearly, the simulation
shows key observations, such as the earthward-tailward rever-
sal of the flow and the sign reversal of Bz at substorm onset, the
pressure and temperature peaks around onset, and the density
dropout just after onset. The simulation results are often not
more different from the observations than the differences in the
measurements from the two plasma analyzers.

Figure 9b shows how the substorm evolution depends on
parameters in the model. Specifically, we have varied the elec-
tron precipitation parameters (affecting the ionospheric con-
ductances) and parameters in the anomalous resistivity calcu-
lation. Clearly, the substorm evolution is very sensitive to these
parameters. Only for specific combinations does a substorm de-
velop. If the parameters are such that no substorm develops the
magnetosphere enters into an enhanced convection mode dur-
ing which very little energy is stored in the tail, but instead the
energy is dissipated by enhanced reconnection in the mid tail.
It is at this point not clear whether there is a universal set of pa-
rameters that would cause a substorm every time a substorm
should occur. Thus, the parameter dependence is somewhat
frustrating because it limits the model’s predictive capabilities.
On the flip side, however, it offers the opportunity to learn more
about the substorm physics. Clearly, a certain amount of iono-
spheric field line tying is required to let a substorm occur. At
the same time, intrinsic properties of the tail are also control-
ling factors, in particular the onset of dissipation. Many more
detailed case studies and theoretical investigation will be neces-
sary to firmly establish these relationships. Note, that these re-
sults are not in contradiction with results from the recent “GEM
reconnection challenge” [11,12,36,52,75,57], because we use a
strongly nonlinear anomalous resistivity term and tail recon-
nection is indeed fast. Of course, the results from the “GEM
reconnection challenge” offer new approaches to modeling the
anomalous diffusion terms which will be pursued in the future.

The comparison of the results with data and the finding that
the simulation captures the essence of the substorm develop-
ment allows further investigation of the processes in the tail
that go beyond the view of in situ spacecraft observations. Fig-
ure 10 shows 2d cuts in a plane at ZGSE=-3.3 RE which lies
approximately in the center of the plasma sheet at 4 different
times for the Bz component of the magnetic field, the Vx com-
ponent of the velocity, and the plasma temperature. This figure
demonstrates that the middle tail, where the energy conversion
occurs, is highly structured. Unlike shown in many cartoons
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Fig. 7. (a) Wind interplanetary magnetic field (IMF) and solar wind data from (73,-18,8) RE GSE on November 24, 1996. From top to bottom:

the magnetic field components Bx, By, and Bz; the total magnetic field (all in nT, GSE); the flow velocity components Vx, Vy, and Vz (in km s−1,

GSE); the number density (in cm−3); and the temperature (in eV). (b) Ground magnetometer traces from the International Monitor for Auroral

Geomagnetic Effects (IMAGE) magnetometer chain on November 24, 1996 (thick dotted lines), and the comparison with the model result (thin

solid line). Shown is the north-south (X) component in units of nT. The stations are Longyearbyen (LYR), Hornsund (HOR), Bear Island (BJN),

Andenes (AND), Sørøya (SOR), Tromsø (TRO), Kilpisjärvi (KIL), Masi (MAS), Kevo (KEV), Kiruna (KIR), Muonio (MUO), Sodankylä (SOD), Pello

(PEL), Lovozero (LOZ), Oulujärvi (OUJ), Hopen Island (HOP), Nurmijärvi (NUR)

of tail reconnection, there is more than one x-line, the existing
x-lines are not simply oriented in the y-direction, and the recon-
nection rate varies along any given x-line. Comparing Bz with
Vx shows that channels of earthward flows transport flux earth-
ward and lead to the dipolarization of the near-Earth field, how-
ever, in a strongly local time dependent manner. The simulation
even captures the phenomenon of substorm particle injection.
The plasma temperature near geosynchronous orbit rises signif-
icantly at substorm expansion onset. This shows that “particle
injection” is, for the most part, earthward transport and adia-
batic heating of plasma, because nothing more is included in
the MHD description. Of course, kinetic features, like energy
dispersion, are beyond the MHD description.

We should reiterate the fact that the value of this study lies
in the combination of simulation with data analysis. The simu-
lation itself would be hardly convincing, in particular, because
it depends on the correct choice of parameters. On the other
hand, the data itself are too sparse and allow for many dif-
ferent interpretations. Taken together, however, a clearer pic-
ture emerges that lends strong support to the near-Earth neutral

line model of substorms with some modifications, such as frag-
mented x-lines and flow channels. This does not quite solve the
“substorm problem” yet, because substorms come in many dif-
ferent flavors and because the simulation cannot yet capture all
of the details, for example auroral arcs. However, with studies
like these more progress can be made.

The simulation also shows why data analysis has not yet
provided a clear picture (not even a penomenological one) of
the substorm process and why intelligent people might come to
quite different conclusions by looking at essentially the same
data sets. Figures 9a and 10 show that even a small variation in
Geotail’s position leads to significantly different observations.
One might be tempted to conclude that studies using observa-
tions from a single (or a few) spacecraft are doomed to fail
to solve the problem because they can never derive suitable
synoptic maps and at best murky statistics. Thus, a convinc-
ing solution may only be found with constellations of 10’s to
100’s of spacecraft, along with modeling and data assimilation
[2,64]. More details about this substorm and the simulation can
be found in [67,68].
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of the tail field reduction in the data and in the model, respectively

4.2 Geomagnetic storms

While substorms are manifestations of geomagnetic activity
that is caused by relatively brief periods (∼1h) of southward
IMF, storms are caused by much longer (several hours to days)
and stronger (negative IMF Bz of several 10’s of nT) periods
of southward IMF. In addition, the southward IMF of storms is
often accompanied by high solar wind speed (sometimes over
1000 km s−1) and high solar wind plasma density (several 10’s
cm−3). Thus, storms exert much more stress on the magne-
tosphere and thus on any model as well. Storms are not only
interesting because they cause extreme magnetospheric condi-
tions, but also because they can cause severe space weather ef-
fects that are potentially harmful to our societal infrastructure
(foremost geosynchronous and LEO satellites, power grids, and
pipelines). Thus, the ability to forecast storm effects has re-
cently become a topic of strong interest. Of course, global mod-
eling in an operational setting would be one key element of
space weather forecasting.

In the following we present a comparison of our model pre-
dictions with several key data sets for the Bastille Day storm
(July 14/15, 2000), which was one of the strongest storms so

far of this solar cycle [71]. We concentrate on space weather
effects, that is, magnetospheric compression and ground mag-
netic perturbations.

Figure 11 shows the solar wind and IMF parameters for
this event. The main characteristics are an interplanetary shock
at ∼1430 UT, followed by the CME sheath until ∼1920 UT,
followed by the CME proper, which lasts for almost 1 day. The
solar wind speed reaches values of ∼1100 km s−1, the density
20 cm−3, and the IMF Bz −60 nT (at ∼2000 UT, the peak of
the storm.)

Figure 12 shows the comparison of the magnetic field
Bz component with measurements from three GOES geosyn-
chronous satellites. First, compared to a typical quiet day (July
13, 2000), the field at these satellites is extremely distorted.
In particular, the field measurements show several episodes in
which Bz becomes negative, indicating that the spacecraft have
crossed the magnetopause and entered the magnetosheath or
even the solar wind. The simulation results compare extremely
well with the observations, predicting all but a few of the mag-
netopause crossings.

Figure 13 shows the extreme compression and distortion of
the magnetosphere at the peak of the storm. The magnetopause



Global Geospace Modeling 13

     -30

     -10

      10

      30

B
x(

nT
)

     -30

     -10

      10

      30

B
y(

nT
)

     -10

      10

B
z(

nT
)

    -800

    -400

       0

     400

V
x(

km
/s

)

       0

       1

       2

N
(c

m
-3

)

       0

     200

     400

P
(1

0-1
2

P
a)

20 21 22 23
       0

    2000

    4000

    6000

Time (Hours)

T
(e

V
)

19 20 21 22 23

LY
R

-300
0

300

H
O

R

-300
0

300

B
JN

-300
0

300

A
N

D

-300
0

300

S
O

R

-300
0

300

T
R

O

-300
0

300

K
IL

-300
0

300

M
A

S

-300
0

300

K
E

V

-300
0

300

K
IR

-300
0

300

M
U

O

-300
0

300

S
O

D

-300
0

300

P
E

L

-300
0

300

LO
Z

-300
0

300

O
U

J

-300
0

300
H

O
P

-300
0

300

N
U

R

-300
0

300

Time (Hours)

IMAGE data
Run 2     
Run 3     
Run 4     

(a) (b)

Fig. 9. (a) Geotail magnetic field and plasma data and comparison with the model results, on November 24, 1996. The dotted lines are magnetic

field and plasma data from the Magnetic Field Experiment (MGF) and Low Energy Particle (LEP) experiment, respectively. Data represented

with open circles are from the Comprehensive Plasma Instrumentation (CPI) instrument. Model results at the nominal Geotail position are drawn

with a heavy solid line. The shaded area is bounded by time series taken from the model at locations that are 2 RE above and below Geotail,

respectively. (b) Comparison of IMAGE ground magnetometer recordings on November 24, 1996, with the results from three different simulation

runs that did not produce a substorm (see text for details). The format of this figure is the same as that of Fig. 7b

comes at this time as close as 4.9 RE to Earth. At this time the
dynamic pressure of the solar wind is 12 times as large as its av-
erage value, and the IMF Bz value is nearly −60 nT. The former
causes a compression of the magnetosphere, while the latter
causes flux erosion. Neither of these effects alone could bring
the magnetopause this far in, but the combined effect does. Be-
cause storm effects of this magnitude are extremely rare (at
most a few per solar cycle) events like this one put empirical
models out of their valid parameter range, thus prediction is
more reliable with numerical models.

The peculiar shape of the dayside magnetosphere has also
consequences for the cross polar cap potential (CPCP). Simple
prediction of the CPCP by regression formulas [72,44] yield
CPCP values of the order of 1000 kV. However, the model and
measurements show that the CPCP reaches only∼300 kV, thus,
the CPCP saturates at this level. Figure 13 indicates indicates
that because of the strong magnetopause erosion flux piles up
in the lobes and the lobe shoulders bulge out. This causes the
reconnection region to be partially shielded from the solar wind
and the compressed IMF in the magnetosheath. Because of this

shielding less magnetic energy can be transported to the recon-
nection site, leading to an overall reduction in the reconnection
rate, and thus magnetospheric and ionospheric convection.

Figure 14 shows the comparison of ground magnetometer
recordings with predictions from the simulation. The quality of
the prediction varies significantly from station to station but is
generally better at high and sub-auroral latitudes, and worst in
the nightside auroral zone. Comparing the fluctuations, i.e., the
time derivative of the magnetic field (which are the cause of
induced electric fields in power lines or pipelines) shows a sim-
ilar picture. Figure 15 combines the spectral power of about 40
ground magnetometers in different latitude zones. Except for
the auroral zone, the predictions of the power spectrum of the
fluctuations is surprisingly good in the 0-3 mHz range. How-
ever, as said, this is not necessarily true for individual stations.
In other words, the model predictions of the total power flux
are more or less accurate; however, the model cannot yet pre-
dict the correct locations of large wave power flux. This event
is discussed in more detail in [71].
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Fig. 10. The magnetic field Bz component, the velocity Vx component, and the plasma temperature in a plane at ZGSE=-3.3 RE , at four different

times: (a) 2200 UT, (b) 2215 UT, (c) 2245 UT, and (d) 2300 UT. Contours are drawn at the zero level for Vx, at 12 nT intervals for Bz, and at

1 and 10 keV for the temperature, respectively. The black dot marks Geotail’s position.

4.3 Lessons from data comparisons

In the preceding sections we have shown that our model can
reproduce a number of characteristic phenomena of substorms
and storms. In particular, the model shows the magnetic en-
ergy loading in the tail during the substorm growth phase, the
dipolarization of the near-Earth magnetic field in the expansion
phase, the concurrent injection of energetic plasma into the in-
ner magnetosphere, the formation of new x-lines, the formation
and ejection of a plasmoid, and the intensification of the west-
ward electrojet at expansion phase onset. Although these phe-
nomena have all been observed in the past, no comprehensive
(and universally accepted) model exists yet that puts these phe-
nomena into context and provides a satisfactory explanation.
The fact that our model produces these phenomena, and the
fact that these are all related to the onset of reconnection in the
near-Earth tail at ∼20 RE lends support to the Near Earth Neu-
tral Line (NENL) model [53,6]. However, we also find that the
tail dynamics is much more complex compared to the NENL
prediction. In particular, the substorm onset is characterized by

multiple x-lines that form at different local times and distances,
and which produce rapid earthward and tailward plasma flows
akin to Bursty Bulk Flows (BBFs) [1,4,3]. This fragmentation
of the tail plasma sheet makes it all but impossible to solve the
“2 minute problem,” that is, the exact onset location and cause
of the substorm expansion phase onset. We should also not for-
get that the model can not at present produce the brightening of
the equator most auroral arc at onset, which is often cited as the
first distinct substorm signature [47,46,27].

As far as magnetic storms are concerned, the study pre-
sented here should be viewed as a first step to model the mag-
netosphere under extreme solar wind conditions. This aspect is
not only of particular importance for space weather, but also
shows that the magnetosphere can exhibit a very particular be-
havior during storms. For example, both the simulation and the
data show that the polar cap potential saturates when the driving
solar wind ingredient, that is, the interplanetary electric field
Eip, reaches very high (>∼20 mV/m) values. For more benign
conditions there is a more or less linear relationship between
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Fig. 15. (a-c) shows the averaged power spectral density (PSD, in units of nT2Hz−1) of the north-south perturbation for ground magnetometer

stations in the sub-auroral zone (a), the auroral zone (b), and the polar cap (c). The solid line is for the data, the solid line with dots represents

the model result. The lower panel (d-f) shows the average PSD of the time derivative of the north-south perturbation (in units of nT2s−2Hz−1)

for the same set of stations
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Eip and the potential [72,15] which apparently loses its valid-
ity for the strong solar wind driving during storms. This result
leads to a host of other questions, for example, if similar non-
linearities also exist for the energy input and dissipation in the
magnetosphere. Global models face here a severe limitation be-
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are plotted as black solid lines, the corresponding model results as
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cause the most characteristic signature of a geomagnetic storm
is the ring current which can not be treated adequately. Ring
current formation is caused by the trapping of energetic plasma
(>∼10 keV ions) in the inner part (2.5 – 8 RE ) of the magne-
tosphere by gradient and curvature drifts. The MHD formalism
does not include these drifts; they are, in fact a consequence of
non-Maxwellian distributions [34,35]. Thus, until global mod-
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Fig. 14. The north-south ground magnetic perturbation (left column,

the scale is in nT) and the corresponding time derivative (right col-

umn, the scale is in nT/s) for 8 ground magnetometer stations. The

station names are indicated at the left of each panel, and the sta-

tions are ordered from north to south, although at different magnetic

local times. Specifically, these stations are, with their abbreviation, ge-

ographic longitude and latitude given in parentheses: Resolute Bay

(RES, 74.7◦, 265.2◦), Cambridge Bay (CBB, 69.1◦, 255.0◦), Bear Is-

land (BJN, 74.52◦, 19.02◦), Poste-d.l.-Baleine (PBQ, 55.3◦, 282.3◦),

Faroes (FAsam, 62.1◦, 353.0◦), Hankasalmi (HAsam, 62.3◦, 26.7◦),

Ottawa (OTT, 45.4◦, 284.5◦), and Borok (BOsam, 58.0◦, 38.3◦). The

black lines show the data and the red lines show the simulation results.

els are coupled with appropriate models of the inner magneto-
sphere (see below) such studies will be difficult.

5 Future directions

The development of global geospace models has by no means
come to an end. There are a large number of regions and pro-

cesses that are not currently covered or that need improvement.
At present some model developments appear most promising:

• The inclusion of the particle drift physics in the inner mag-
netosphere in the form of sub-models similar to the Rice
Convection Model (RCM).

• Adaptive grid solvers that allow better resolution of plasma
and field boundaries along with reduced numerical diffu-
sion.

• Better magnetosphere-ionosphere coupling, in particular a
more self-consistent model for electron precipitation.

• A multi-fluid formalism to study the ionospheric outflow
and the role of ionospheric plasma in the magnetosphere.
This includes the need for an outflow specification model
or a self-consistent outflow model, none of which exists
yet.

• Data assimilation from multiple spacecraft observations.

6 Conclusions

Global modeling has been proven an extremely powerful tool
to study the solar-terrestrial plasma interaction. It’s importance
will likely increase in the future as models become ever more
sophisticated and as computational power becomes ever more
abundant and cheaper. We are now entering an era where global
modeling does no longer depend on expensive supercomputers,
but where affordable desktop equipment (Beowulf PC clusters)
is becoming sufficient for meaningful global modeling. This
should foster the more widespread use of global models, not
only by the model developers themselves, but also by others in
the scientific community.
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