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Abstract.
We describe a technique for tracking magnetic nulls in computer simula-

tions of magnetized plasmas. The technique is based on the Greene (1992)
algorithm of computing the topological degree of a discretized vector field. We
apply the Greene algorithm to a resistive magnetohydrodynamics (MHD) simu-
lation of Earth’s magnetosphere. We demonstrate that under generic northward
interplanetary magnetic field (IMF) conditions, the large scale topology of the
dayside magnetopause is consistent with a null-null separator topology, with the
dayside X line extending across the subsolar magnetopause and terminating at
two magnetic nulls in the polar cusps.

1. Introduction

The Dungey (1961, 1963) reconnecting magnetosphere model has proved to be
a powerful framework within which to organize a large set of ground and space
based observations (e.g., ionospheric convection patterns observed with ground
based radar, in situ spacecraft observations of the precipitation of solar wind
particles into the magnetosphere, etc. – see Kennel (1995) for a review). Never-
theless, the three-dimensional magnetic topology of the magnetosphere remains
something of a puzzle. For example, when the interplanetary magnetic field
(IMF) is due northward, Dungey (1963) visualized magnetospheric reconnection
by projecting the magnetic field onto the noon-midnight meridional plane, as
illustrated in Fig. 1. In such a projection, one naturally identifies the magnetic
neutral points as potential sites of reconnection. In three dimensions, however,
the magnetic field topology for exactly northward IMF differs qualitatively from
that shown in Fig. 1. Figure 2 shows the magnetic field topology of a vacuum
superposition (in which a uniform IMF is superimposed on a dipole field) for
the case where Earth’s dipole tilt is zero and the IMF is due northward. Unlike
the situation in Fig. 1, in which there are two distinct separatrix surfaces which
intersect to form two distinct null lines, in Fig. 2 there is only a single surface
which separates solar wind field lines from closed magnetospheric field lines. The
separatrix consists of an infinite number of field lines which join the two cusp
nulls (shown as small spheres in Fig. 2). Further, the separatrix surface of Fig. 2
is structurally unstable, that is, the surface does not survive general (nonideal)
perturbations of the magnetic field (see Fig. 2). In the generic case, in which the
dipole and IMF axes are not aligned, the single separatrix surface of Figure 2
bifurcates into two distinct surfaces, and the reconnection “X line” is identified
as the intersection of the two separatrix surfaces. In this paper, we apply a
topological degree algorithm developed by Greene (1992) to compute the topo-
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Figure 1. This figure illustrates reconnection in a two-dimensional mag-
netosphere under northward IMF conditions. The sun is to the left. The
grey ovals are reconnection diffusion regions, localized around nulls N1 and
N2. Grey arrows illustrate plasma flows, while black arrows illustrate the
magnetic field.

Figure 2. This figure shows a three-dimensional view of the vacuum su-
perposition topology under pure northward IMF conditions (left) and when
the interplanetary magnetic field is not antiparallel or parallel to the dipole
axis (right). Nulls are illustrated by the two spheres in the polar cusps. The
thick grey tube joining the two cusp nulls in the right figure is the magnetic
separator, which defines the intersection of the Σ surfaces (illustrated here
with field lines fanning out from each null)

.

logy of Earth’s dayside magnetopause as simulated by the OpenGGCM (Open
Global Geospace Circulation Model) code (see Raeder 2003 for a description of
the numerical methods used).

2. Tracking magnetic nulls in MHD simulations

Greene’s algorithm is based on the concept of the topological degree of a map
f : Rn → Rn, relative to the domain D ⊆ Rn. The map f takes the vector
x =< x1, x2, ..., xn > to the vector f =< f1(x), f2(x), ..., fn(x) >. Let Jf be the
Jacobian of f . Then the topological degree (Kronecker 1869) of f , relative to
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domain D, is defined as

deg(f,D) =
∑

x∈f−1(0)

sgn det(Jf (x)), (1)

where 0 is the n-dimensional zero vector. Thus, the topological degree is the
difference between the number of solutions of f = 0 for which det(Jf (x)) > 0
and the number for which det(Jf (x)) < 0. One can compute the topological
degree by evaluating the Kronecker integral (see, for example, Polymilis et al.
2003):

deg(f,D) =
Γ(n/2)

2πn/2

∫

∂D

∑n
i=0Aidx1...dxi−1dxi+1...dxn

(f2
1 + f2

2 + · · · f2
n)n/2

, (2)

where Γ(x) is the gamma function and

Ai = (−1)n(i−1) det M (3)

Here M is the n×n matrix such that Mi1 = fi and Mij+1 = ∂fi
∂xj

, with j ranging

over {1, 2, ..., i− 1, i+ 1, ..., n}.
For example, when the map in question is the magnetic field, B, the Kro-

necker integral takes the following form:

deg(B, D) =
1

4π

∫

∂DB

B · dσ
B3

, (4)

where we have transformed the integral into magnetic field space, DB is the
image of D under the map B(x), dσ is a differential surface element in magnetic
field space, and B is the magnitude of the magnetic field (B is the distance from
the origin in magnetic field space). By Gauss’s law, if ∂DB encloses the origin
once (i.e., if ∂D contains a single magnetic null), then deg(B,D) = ±1 (the sign
is determined by the orientation of ∂DB, which is, in turn, determined by the
map B from D to DB). Similarly, if D contains N nulls, then one can break up
(4) into a sum of integrals, each one corresponding to a subvolume, Ds, enclosing
a single null.

Greene (1992) discretizes (4) by sampling magnetic field vectors on D, tri-
angulating the sampled points (see Fig. 3), transforming the resulting triangles

into magnetic field space (thus, approximating ∂DB by the polyhedron ˜∂DB in
magnetic field space), and computing the following sum:

deg(B, D) ≈
NT∑

i=0

Ai, (5)

where NT is the number of triangles, and

Ai = 4 arctan{[tan(θ1 + θ2 + θ3)/4

× tan(θ1 + θ2 − θ3)/4

× tan(θ2 + θ3 − θ1)/4

× tan(θ3 + θ1 − θ2)/4]1/2}. (6)



134 Dorelli et al.

Figure 3. This figure illustrates the calculation of the topological degree of
a discretized magnetic field, relative to an OpenGGCM finite difference cell.
Each computational cell is decomposed into 12 triangles (left cube), each of
which is mapped (using the values of the magnetic field at the eight vertices
of the cell) to a corresponding triangle in magnetic field space (right cube).
In this example, there is a single linear null (grey sphere) such that Bx = x,
By = y, and Bz = −2z.

Here Ai is the area of the spherical triangle corresponding to the projection of
the i-th triangle of ˜∂DB onto the unit sphere in magnetic field space: cos θi =
(Bj ·Bk)/|Bj ||Bk|, where the indices {i, j, k} are cyclic permutations of {1, 2, 3}.
The areas of the spherical triangles are oriented such that Ai has the same sign
as the volume element Bi ·Bj ×Bk > 0.

3. OpenGGCM simulations

Figure 4 shows the magnetic skeleton computed from the OpenGGCM sim-
ulation after 6840 seconds of simulated time. Steady solar wind boundary
conditions, with a generic northward interplanetary magnetic field, were used
to drive the simulated magnetosphere. The thin lines in the figure are mag-
netic field streamlines corresponding to 180 seed points randomly distributed
within spheres of radii 1.5RE around the northern (marked “A”) and southern
(marked “B”) cusp nulls, located at the point N1 = (−2.4RE, 6.3RE, 12.9RE)
and N2 = (−3.2RE,−6.5RE,−13.5RE), respectively. Thus, the thin lines lie
approximately on the Σ surfaces (here, we are following the nomenclature of
Lau & Finn (1990)) associated with the two nulls. The thick grey line is the
magnetic field streamline which passes through the point (10.35RE, 0, 0), the
approximate location of the magnetopause along the Sun-Earth line. Note that
this line passes very close to the two nulls used to visualize the Σ surfaces. Also
note that the two Σ surfaces come into contact at the approximate location of
the thick grey field line. Thus, the thick line gives the approximate location of
the magnetic separator defined by the intersection of the two separatrix surfaces
associated with nulls N1 and N2.

It is clear from Fig. 4 that the topology of the simulated magnetopause is
more complex than that of the simple vacuum superposition. While the vacuum
superposition topology has two magnetic nulls, a single type A null and a single
type B null, the topology shown in Fig. 4 has more than two magnetic nulls.
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Figure 4. This figure shows the magnetic skeleton computed from the
OpenGGCM simulation after 6840 seconds of simulated time. Nulls are illus-
trated as small spheres. The large central sphere is centered at Earth. The
thin lines are magnetic field lines which lie approximately on the Σ surfaces:
one set of lines fans out from the sphere marked “A” (a type A null), and the
other set fans out from the “B” null. The thick grey line lies approximately
at the intersection of the two Σ surfaces.

Indeed, there appear to be four distinct clusters of magnetic nulls, two in the
northern polar cusp and two in the southern polar cusp. Nevertheless, while
the number of nulls in each cluster varies in time (with nulls being created
and destroyed in pairs), the locations of the clusters remain relatively steady.
Further, if one computes the topological degree of each cluster, one finds that the
large scale topology is consistent with a simple two-null separator topology. This
is illustrated in Fig. 5, which shows the number of type A nulls (squares) and
type B nulls (circles) within each cluster as a function of time. After a steady
state has been reached (i.e., after about 1000 seconds of simulated time), the
number of type A nulls in the northernmost cluster always exceeds the number of
type B nulls by one; thus, this cluster has a topological degree of 1. In contrast,
the southernmost cluster has a topological degree of −1. The two intermediate
clusters always have equal numbers of type A and type B nulls, corresponding
to a vanishing topological degree. Thus, the dayside magnetopause magnetic
field topology is consistent, on the large scale, with a simple separator topology,
despite the fact that the polar cusp topology is more complex (with multiple
nulls in each polar cusp).

4. Conclusions

We have demonstrated the use of the Greene (1988) topological degree algorithm
for tracking magnetic nulls in a resistive MHD simulation of Earth’s magneto-
sphere. The simulation was carried out with the OpenGGCM code (see Raeder
2003 for a description of numerical methods implemented in the code). We con-
sidered a single simulation, corresponding to steady solar wind conditions with a
generic northward IMF, and computed the topological degree of each computa-
tional cell of the simulation grid. A topological degree of 1 indicates that the cell
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Figure 5. This figure shows the temporal variation of the dayside magne-
topause magnetic field topology. The four panels show the number of mag-
netic nulls within spheres of radius 2RE centered at C1, C2, C3, and C4,
respectively. Squares show the number of type A nulls, while circles show the
number of type B nulls.

contains a type A null; a topological degree of −1 indicates that the cell contains
a type B null. We found that the topology of the dayside magnetopause was
consistent, on the large scale, with a simple null-null separator topology (see,
for example, Lau & Finn 1990), but the field topology was more complex in the
polar cusps, with multiple nulls forming and annihilating in pairs.
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