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Abstract The use of supervised methods in space science have demonstrated powerful capability in
classification tasks, but purely unsupervised methods have been less utilized for the classification of spacecraft
observations. We use a combination of unsupervised methods, being principal component analysis, Self‐
Organizing Maps, and hierarchical agglomerative clustering, to classify THEMIS and MMS observations as
having occurred in the magnetosphere, magnetosheath, or the solar wind. The resulting classification are
validated visually by analyzing the distribution of classifications and studying individual time series as well as
by comparison to the labeled data set of a previous model, against which ours has an accuracy of 99.4%. The
model has a variety of applications beyond region classification such as deeper hierarchical analysis,
magnetopause and bow shock crossing identification, and identification of bursty bulk flows, hot flow
anomalies, and foreshock bubbles.

Plain Language Summary Machine learning in space science often uses supervised methods for
classification, but we explore using unsupervised methods for classifying spacecraft observations. We combine
principal component analysis, self‐organizing maps, and hierarchical clustering to classify whether observations
occurred in the magnetosphere, magnetosheath, or solar wind for THEMIS and MMS. We verify classifications
both visually and using a preexisting labeled data set, achieving 99.4% accuracy. Our model has additional
applications such as the ability to analyze subgroups of clusters, identify boundary regions between the clusters,
and flag important transient events related to the dynamics of the magnetosphere.

1. Introduction
The region of space where Earth is directly affected by solar activity can be divided into various regions, such as
the solar wind, the magnetosheath, and the magnetosphere itself. Since the first measurements of the solar wind
were made incidentally by Gringauz et al. (1962) and intentionally by Neugebauer and Snyder (1962), many
missions have recorded measurements in these different regions to investigate various space plasma processes.
The solar wind is a continual stream of plasma ejecta originating from the Sun that is accelerated in the solar
corona, although the exact mechanisms through which it does this have not yet been confirmed (Cranmer &
Winebarger, 2019). This incident plasma is slowed to sub‐magnetosonic speeds in order to be diverted about the
Earth's magnetosphere, resulting in a denser region of heated and slowed plasma called the magnetosheath (Lucek
et al., 2005). The bow shock separates these two regions and causes these changes in plasma flow. It has been
generally modeled as a hyperbola in the x‐y plane in GSE coordinates where its flaring and position vary in
response to solar wind parameters (Fairfield et al., 2001). The magnetosphere itself can be further compart-
mentalized into a number of sub‐regions containing plasma with different properties, including the ring current,
the radiation belts, the ionosphere, the tail, etc. The boundary layer separating this region from the magnetosheath
is the magnetopause, which results from the pressure equilibrium between the magnetic pressure of the earth and
the dynamic pressure of the shocked solar wind (Willis, 1971).

In analyzing the measurements of spacecraft that frequent these regions, it is generally not difficult to identify the
location of these regions given a brief time history. The same can often be said for doing so with a joint set of
measurements at a single moment in time. Drafting general mathematical relationships that can always correctly
classify the regions is more challenging. Classification in the context of machine learning is ideal for this task as it
involves determining what class a data point belongs to. This requires that one curates a data set and provides the
class label for each measurement. There have already been many successful efforts in using this approach for
different missions, such as those by Breuillard et al. (2020), M. R. Argall et al. (2020), and Olshevsky et al. (2021)
using deep learning, or those of Nguyen et al. (2022), Smith et al. (2020), and Camporeale et al. (2017) for more
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traditional nonlinear approaches. Clustering is an unsupervised method in which data are amalgamated into
homogeneous groups and more recently, some have used related methods to classify data, like Amaya
et al. (2020) with solar wind classifications from ACE data, Innocenti et al. (2021) with identifying different
regions in magnetospheric simulation results, and Köhne et al. (2023) for classifying PIC simulations involving
the tearing instability.

Our methodology is based on an unsupervised approach to separate the solar wind, magnetosheath, and
magnetosphere measurements from spacecraft data. Our data are recorded at different time resolutions, so
methods reliant upon a consistent time step cannot be utilized and must focus on the joint set of measurements
alone. We use principal component analysis to reduce the dimensionality and correlations in our data set, along
with a visualization technique to add greater interpretability to the dimensionality reduction. Self‐Organizing
Maps (SOMs) (Kohonen, 1982) are then used to effectively reduce the size of the training set so that a larger
number of clustering algorithms can be considered.We finally use hierarchical agglomerative clustering to cluster
the individual nodes of the SOM and propagate the cluster assignments of the nodes to the data they represent. The
use of hierarchical clustering coupled with a SOM provides a unique advantage in that in addition to being able to
separate the data into clusters, these clusters are composed of subclusters which can be further investigated. This
combination distinguishes it from other more common clustering methods. The paper is outlined as follows: data
sources, data preprocessing, dimensionality reduction, SOMs, clustering of SOM nodes, results, and derived
boundary crossings.

2. Data Sources
We use data from two missions, Time History of Events and Macroscale Interactions during Substorms
(Angelopoulos, 2008), or THEMIS, and the Magnetospheric Multiscale Mission (Burch et al., 2016), or MMS.
These data sets include measurements of magnetic field B, the ion velocity V, the ion scalar temperature T, and
the ion density n, a cumulative eight features. The vector data is in GSE coordinates. Below, we describe for each
mission how the data is prepared.

2.1. THEMIS

THEMIS is a collection of five spacecraft (THEMIS‐A, B, C, D, and E) with equatorial orbits with the purpose of
observing different aspects of magnetic storms and substorms We used data from March 2007 to the end of
December 2020. THEMIS‐B and C were moved to lunar orbit in 2009 to become the Acceleration, Reconnection,
Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (Angelopoulos, 2014) (ARTEMIS)
mission where they would make measurements departing from what would normally be seen by THEMIS‐A D,
and E. We only use THEMIS‐B and C data up until end of year 2009.

The ion velocity, temperature, and density measurements of THEMIS are from the Electrostatic Analyzer in-
strument (McFadden et al., 2008) and are available at multiple time resolutions, such as “reduced” (ESAR) and
“full” (ESAF) data packets. The ESAR offers higher time resolution at once per spin (∼3 s), but the cold tem-
peratures of typical solar wind mean that their distributions are narrow and require sufficiently high angular
resolution to resolve. The ESAF packets sacrifice time resolution for higher angular resolution and are available in
two formats, 32‐spin (96 s) in fast survey mode and 128‐spin (∼6.5 min) in slow survey mode. Figure 5 of
McFadden et al. (2008) illustrates the difference in angular resolution. The data are flagged for quality and we use
quality zero data, indicating no issues. The magnetic field measurements are from the Flux Gate Magnetometer
(FGM) (Auster et al., 2008) and are collected at spin resolution. This data is then averaged down to the resolution
of the ESAF measurements to synchronize them.

2.2. MMS

MMS, the Magnetospheric Multiscale Mission (Burch et al., 2016), is a constellation of four spacecraft (MMS‐1,
2, 3, and 4) flying in low‐to mid‐inclination orbits in tight formation to make electron‐scale measurements. The
ion measurements are taken from the Dual Ion Spectrometer as part of the Fast Plasma Investigation (Pollock
et al., 2016) suite. Multiple ion spectrometers per spacecraft makes it possible to make measurements below spin
resolution. The magnetic field measurements are taken from the FGM (Russell et al., 2016) and are available at
10 ms. These magnetic field measurements and ion measurements are averaged down together to 1 min
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resolution. Data from MMS 1, 2, and 3 span September 2015 to December 2021. Due to damage to the spec-
trometers of MMS 4, we only use data from September 2015 to 7 June 2018.

2.3. Data Cleaning

The THEMIS and MMS data sets possess 8.13 and 4.09 million points, respectively. The methods we apply to
these data can be very sensitive to outliers and the size of magnetic field measurements closer to Earth could
impact our ability to separate them in an unsupervised manner, so we constrain our data to be between 7 and 35
Earth radii. This final filtering leaves us with 9.64 million points, 4.09 million (42.4%) being MMS and 5.55
million (57.6%) being THEMIS. We separate our data with a test‐train split of 95% and 5%, giving us a training
size of ∼482k points. The distributions of the magnetic field, ion velocity, ion density, and ion temperature
measurements are shown in Figure 1.

3. Data Preprocessing
The eight variables,V, B, n, and T, hereafter referred to as features, of our data set do not possess enough variance
for many unsupervised methods to sufficiently separate the regions. It is very common within machine learning to
engineer derived features from the original in hopes of capturing non‐linear relationships (Horn et al., 2020)
because what is non‐linearly separable in some space might become linearly separable in a higher dimensional
space. To this end, we include the ion speed V, the magnetic field magnitude B, and the ion momentum density,

Figure 1. The distributions of all data collected, both training and testing. It is apparent from the density and temperature distributions (both in log10 scale) that multiple
populations are present: Sparse (0.1 #/cc < n < 1 #/cc), moderate‐density (1 #/cc < n < 30 #/cc), and dense (n > 30 #/cc) plasma and very cold (T < 10s eV), warm (10s
eV < T < 1 keV) and hot (T > 1 keV) plasma. These different peaks in distributions are ideal for clustering.

JGR: Machine Learning and Computation 10.1029/2024JH000221

EDMOND ET AL. 3 of 26

 29935210, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000221, W
iley O

nline L
ibrary on [01/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



mom = n V (with ion mass set to 1), as five additional features, giving us a total of 13 features. The addition of
the ion momentum density vector is to help better separate the magnetosheath from the solar wind and magne-
tosphere as the magnetosheath acts as a transition region between them.

Most of the features have ranges over a few orders of magnitude whereas the
density, temperature, and momentum density components cover more than
several. We convert the density and temperature to log10 scale, but the same
cannot be done for the momentum density due to the negative values. This is
circumvented by transforming the momentum density using the log10 of the
absolute values of their components instead. After, these data still possess
uneven ranges that can impact the performance of the dimensionality reduc-
tion and clustering methods we will use. To avoid feature bias, we rescale our
training data using min‐max normalization such that the new minimum and
maximum of each feature is 0 and 1, respectively. The distributions of this
rescaled training data is shown in Figure 2.

Non‐negligible feature correlation is certain given our choice of features and
this is evident in the correlation heatmap of Figure 3. The high number of
correlated features means that direct clustering methods would be biased in
the favor of these correlated components. Further still, the dimensionality can
make some methods computationally expensive or cause them to find poor
solutions due to the curse of dimensionality. The implication of the latter here
is that distances between points will become smaller as the dimensionality
increases, reducing the quality of clustering solutions. For data that does not
possess significant outliers or that has been meticulously cleaned, the loss in
quality of these solutions may be small, but it can become an issue for noisy
data, especially data that are observations. We address both the correlation of
features and dimensionality in the dimensionality reduction method to follow.

4. Dimensionality Reduction
Our training set prohibits using many clustering methods due to a combination
of the training size, the dimensionality, and the presence of correlated fea-
tures. We can simultaneously reduce the number of dimensions and the
number of correlated features using one of the most prominent dimensionality
reduction techniques, principal component analysis (Jolliffe, 2011), or PCA.
This method provides a matrix Q with shape D × K to reduce the dimen-
sionality D of a data set to a reduced dimension K via a linear transform where

Figure 2. Violin plots representing the distributions of input features of our min‐max scaled training set. The violin plots here
show the kernel density estimate (KDE) as the width, the range of the estimate as a thin vertical gray bar, the interquartile
range as a thick vertical black bar, and the median as a white dot. The KDE for each variable is scaled according to the width
so that the distributions are more visible.

Figure 3. A heatmap of the correlations between variables in the min‐max
rescaled training set. The plot is symmetric across the diagonal. It is to be
interpreted as showing the correlation of each feature with every other
feature in the training set, for example, correlation (log10(n), log10(T))̃
− 0.6, or the log10 of the density is moderately negatively correlated with log10
of the temperature. There is a visible number of variable pairs with large
magnitude in correlation (the bright or dark colored boxes in the off‐diagonal).
Also apparent is the absence of correlation of BX and BY with all other
variables–even with (b) This is because the distributions of BX and BY are
symmetric around 0, which is visible in Figure 1. The VX and VY components
have correlation with V because large speeds (>350 km/s) are often going to be
associated with solar wind, which generally possess large negative magnitudes
in VX and slightly positive VY, on average (̃30 km/s), due to the angle that the
solar wind arrives at the Earth. Lastly, note the positive correlation between VX
and T. This is legitimate as the lowest values of VX occur in the solar wind,
which is characterized by the lowest temperatures; more moderate values of VX
and T occur in the magnetosheath; the largest (read, most positive) values of VX
occur in the magnetosphere, which also possesses the largest temperatures.
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K is specified and can vary between one and D. It is analogous to a hyper‐rotation of the D‐dimensional space in
which the cardinal axes, or principal components, are oriented along directions of decreasing variance. If a
variance threshold is chosen, then a number of the principal components can be selected that cumulatively
represent that variance. This method has limitations in that it is a obviously a linear method of dimensionality
reduction. When data are characterized by non‐linear correlations, this complicated structure can be destroyed in
the transformation and can cause misinterpretations of the resulting components.

However, since PCA is linear, it can also be interpretable. Once Q is known, its elements, or “loadings,” can be
inspected to ascertain the influence of each feature along any principal component. Using just the first two
principal components, we can visualize these loadings as vectors that can visually communicate the importance of
each feature in the projection. Plotting these vectors on top of the first two components of the projection is called a
biplot and is shown in Figure 4. Using biplots to infer information from PCA results has a rich history and an
introduction to the concept is covered in Kohler and Luniak (2005).

Although feature correlations and dimensionality are simultaneously addressed using PCA, there is still the matter
of a large training size after the PCA transform. The size can be reduced by simply randomly selecting fewer
points, but this will only trade variance for sample size. Choosing enough points to represent a similar amount of
variance will still require a large population size. In the next section, we use a method in which distinct points act
as “representative” of their local distribution such that their amalgamation reflects the distribution of the
training set.

5. Self Organizing Maps
K‐Means (Lloyd, 1982) is the most popular clustering method and creates clustering solutions that separate data
into k Voronoi‐separated clusters where k is specified in advance. The most common convergence criteria used
for this is the sum of square distances of all points from their cluster centroids, also called the inertia or quan-
tization error, which is common among vector quantization methods (de Bodt et al., 2004; Gray, 1984). Self

Figure 4. Left: The normalized eigenvalues from the PCA decomposition are plotted in descending order as the solid blue
line. The cumulative sum of these normalized eigenvalues is plotted as the dashed black line.We choose to select a number of
components representing at least 90% of the variance (the horizontal black line), so 6 components are chosen that represent
93% (the vertical dashed black line). Right: A bivariate histogram of the training data projected onto the first two principal
components, representing 76% variance. It is evident from the first two components that several clusters are present in the
data. The arrows plotted here are the loadings for our features across the first two principal components. The length of an
arrow represents the influence that feature had for the PCA projection along that direction. All arrow lengths are normalized
to the longest arrow, that of the B feature. From the plot, the temperature feature, T, significantly influenced the 0th
component but barely for the 1st and points to the cluster on the left. This means that cluster is likely to correspond to higher
temperatures than the data on the right. The density, n, roughly equally contributed to both components and indicates that the top
right region is related to higher densities and by its antiparallel direction, the cluster on the left is largely associated with lower
densities. Since VX points to the top left and V to the bottom right, the bottom right region is related to data with high speeds and
large negative values of VX. The BX, BY, VY, and VZ features are clustered at the origin, indicating that they did not influence
the first two components (although they may have impacted the higher order components). Overall, we can surmise from this
plot alone that the left, top right, and bottom right areas are associated with higher temperature, higher density, and higher
speeds, respectively. Thus, it is likely that these clusters are the magnetosphere, magnetosheath, and solar wind populations.

JGR: Machine Learning and Computation 10.1029/2024JH000221

EDMOND ET AL. 5 of 26

 29935210, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000221, W
iley O

nline L
ibrary on [01/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Organizing Maps (Kohonen, 1982, 2014) can be viewed as a more powerful alternative to K‐Means because they
utilize a combination of competitive and cooperative updates during training. Individual cluster centroids, or
nodes, of the map are updated to represent data in such a way that the topological relationships between the nodes
are maintained throughout training. Preserving this relationship means that the average inter‐node distance can be
used to effectively create 2D visualizations of the data. Any data point will always be closest to some node
(referred to as the Best‐Matching‐Unit, or BMU), and that node can represent the local distribution of data. Once a
map is trained, this property can be utilized such that the nodes are used as input for other clustering algorithms.
This greatly reduces the data size for clustering and expands the types of clustering methods we can use.

5.1. Implementation

There are several open‐source python packages implementing SOMs available. The most common is minisom
(Vettigli, 2018), which uses a vectorized design to speed up computations. For large data sets or network sizes, the
time to completion may still be quite long. Traditionally, training a SOM has been a computationally expensive
process for two reasons: The network adapts to one point at a time, and it is fairly common that multiple trainings
are done. The latter occurs because SOM initialization and training are done stochastically and there is a large
number of hyperparameter choices available (the number of iterations, the network size, the decay function, the
neighborhood function, the initial and final learning rate and neighborhood size, etc). Since the network with the
lowest quantization error is usually selected as the best fitting, this significantly increases the total amount of time
needed to get a complete and robust model.

The one‐at‐a‐time training constraint is resolved using SOMs that train over batch‐updates. These usually involve
computing weighted averages of the neighborhood values across a batch of samples. This approach is taken by
two popular python packages Somoclu (Wittek et al., 2017) and XPySom (Mancini et al., 2020) and speed‐up on
CPU resources alone can be close to a factor of 100, sometimes greater. We have used the XPySom package for
our results.

5.2. Hyperparameter Optimization and Training

To expedite the process of finding the best fitting SOM with the most appropriate set of hyperparameters, we
create a micro training set. First, we min‐max normalize the PCA‐projected training data in order to avoid bias to
any particular feature. Next, we run K‐Means to resolve 10,000 clusters with a K‐Means++ initialization method
for 100 runs and select the optimal run based on minimal inertia. This initialization method makes better choices
for cluster centroids by weighting data in proportion to their square distance from the previously created centroid.
Then for each centroid, the closest point in the training data is extracted, and the resulting 10,000 points form the
micro training set. The remaining points in the training data set are referred to as the macro training set with a size
of 470k.

We consider a number of different SOM hyperparameters and that each SOMwill be trained on the micro training
set and validated on the macro training set. The maps are validated in this way because the macro set will contain a
larger number of outliers, and given the noise evident in Figure 4, resolving these outliers correctly will be critical.
The hyperparameters of the map with the lowest value for our loss function will be retained and a final SOM will
be trained using these hyperparameters on the macro training set. We define our loss function to be

L = Q ∗ (
nxny

(nx)max(ny)max
+
max{nx,ny}
min{nx,ny}

). (1)

where Q is the quantization error of the SOM, nx and ny are the dimensions of the 2D node grid, and (nx)max and
(ny)max are the maximum values permitted for the x and y dimensions. The max{nx,ny}/min{nx,ny} term penalizes
non‐square networks and will only allow for non‐square maps should they provide a sizably lower quantization
error.

It should be noted that the use of a custom loss function for SOM validation is critical for our purposes. With the
number of training iterations and training data set held constant, increasing the map size will generally reduce the
quantization error for many choices of hyperparameters. A larger map size may better represent the training data,
and in many cases even the test data, than a smaller map, but a larger number of nodes and their distributions may

JGR: Machine Learning and Computation 10.1029/2024JH000221

EDMOND ET AL. 6 of 26

 29935210, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000221, W
iley O

nline L
ibrary on [01/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



be suboptimal for clustering methods that will fit to these nodes. This can be loosely seen as a form of overfitting,
but not in the sense of a model not generalizing well to unseen data. To illustrate this concept by example,
consider training a “small” map on a large data set containing heterogeneous groups whose distributions are
somewhat (but not extremely) non‐convex. One might find that the distributions of the nodes mapping to these
different groups are approximately spherically separable because there are few to no nodes mapping to outliers.
This would be a good motivation to use K‐Means to cluster the nodes for such maps. However, as the map size is
increased, the node distributions will begin to better resemble the more complicated, original distribution of the
data, which contains harder‐to‐resolve non‐convex distributions that clustering algorithms like K‐Means or
Gaussian Mixture Models (GMM) may struggle to resolve.

The python‐based optimization library Optuna (Akiba et al., 2019) is used to choose hyperparameter values. The
training of each SOM on the micro training set is referred to as a trial. Optuna offers a variety of samplers to
generate hyperparameter choices, and we use the Tree‐structured Parzen Estimator with independent sampling as
the sampler. It generates hyperparameter choices by fitting two sets of GMM per trial, one set for the better
performing trials, l(x), and another for the remaining, g(x). Each set involves fitting a GMM for each hyper-
parameter x and the hyperparameter value selected is that which maximizes the ratio of density estimates
l(x)/g(x). Maximizing this ratio is consistent with choosing a hyperparameter that is simultaneously most likely to
be generated by l(x) (the “good” models) and least so by g(x) (the “poor” models).

For our optimization, we considered the following hyperparameters. The number of nodes for the SOM grid nx
and ny, the initial learning rate α, the initial neighborhood size σ, the neighborhood function H, and the decay
functionD. We have fixed the number of training epochs to be 50, the final learning rate and neighborhood size to
be 0.01, and the maximum nx and ny dimensions to be 30. The values the hyperparameters are permitted to take are
in the following list:

1. 5≤ nx,ny ≤ 30
2. 1≤ σ≤ ̅̅̅̅̅̅̅̅̅nxny

√

3. 0.1≤ α≤ 1
4. D: {linear, exponential}
5. H: {Gaussian, Ricker}

5.3. SOM Results

After 500 trials, the best hyperparameter options are (nx,ny) = (14, 14), σ = 5.518, α = 0.843, D = exponential,
andH = Ricker. We train a SOMwith these hyperparameters on the macro training set which completes in 7 min.
The resulting SOM has a quantization error of 0.0702 and 0.0703 on the macro training and test sets. The loss
function rounds to 0.0855 and 0.0856. With a Intel Xeon 2.90 GHz E5‐2690 (32 cores, 64 threads) CPU and
64 GB of RAM available, the entire process of hyperparameter optimization and final model training takes
approximately 3 hr.

While the SOM we have trained has a good quantization error, there are visualization techniques we can use to
further assess how well it represents the data. Since the goal of a SOM is to give a vector‐quantized representation
of the data, one simple approach is to create plots of the data itself with the SOM node positions overlaid. If it is an
effective representation, it should roughly map to positions of high data density, both in scatter plots and his-
togram marginals. We show pairplots over the first three min‐max scaled principal components of the test set in
Figure 5. When scaling up the marginal histograms of the node positions to that of the marginal histograms of the
test set, there is good agreement over the 0th and 2nd components. The 1st component shows partial agreement
with the node histogram, only somewhat capturing the peak in density between 0.3 and 0.4.

Another method uses the ordered nature of the SOM to create a heatmap of distances between the nodes. Since the
nodes of a SOM have an ordered topological relationship, we can compute the average distance between a node
and its immediate neighbors and create a heatmap of these average neighbor distances. The 2D matrix of these
values is referred to as the U‐Matrix. The U‐Matrix for the test data is shown in the top left of Figure 6. Moreover,
since each data point can be uniquely associated with its corresponding BMU in the SOM, we can then compute
the average of all data per node. This average value per node can be used to create heatmaps of the SOM for any
feature from the data, as seen in the remaining plots of Figure 6.
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6. Clustering of SOM Nodes
Applying direct clustering methods caused difficulties involving size, dimensionality, and multicollinearity. We
resolved the latter two using PCA and have addressed the first by training a SOM to act as a further discretized
representation of the data. With a SOM representation, we now can consider a much wider choice of methods to
cluster the data as training size is no longer a constraining factor. Once a clustering method is trained, it can
separate the SOM nodes automatically, classifying which nodes belong to which cluster. These node classifi-
cations can then be propagated to the data that the nodes represent, that is, if a node A is assigned to cluster 1, then

Figure 5. Pairplots over the first three min‐max normalized principal components (83% variance) of the test set. The off diagonal plots are bivariate histograms for the
test data in greyscale. Scatter plots of the Self‐Organizing Map (SOM) node position are plotted in red on top of the bivariate histograms. The diagonal plots are the
marginal distributions where the black line is the test data distributed over 100 bins. The SOM node positions are simultaneously binned but at a smaller resolution of 25
bins. The nodes generally match the histograms of the 0th and 2nd components with a dip noticeable in the nodes histogram of the 1st component.
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all data for which node A is the BMU will be assigned to cluster 1. We used an agglomerative, or “bottom‐up,”
form of hierarchical clustering as implemented in the scikit‐learn package (an overview of various hierarchical
clustering methods is covered in Nielsen (2016)). In order to focus on separating clusters based on homogeneity,
we used aWard linkage to determine the merge order of clusters. In hierarchical agglomerative clustering, if there
are N clusters, then all N‐choose‐2 cluster pairings are considered for possible merging. The optimal merger is
determined using a linkage function, which produces a number representing the similarity of the clustering where
smaller numbers indicate more similar clusters, and the pair with the smallest linkage function value are merged.
In some linkage functions, this can be interpreted as a distance, such as with the single, complete, average, and
centroid linkages. The linkage we used, Ward's linkage, is instead concerned with identifying the cluster pair that
minimizes the in‐cluster variance. The entire model pipeline, including the approach used for hyperparameter
optimization of the SOM, is shown in Figure 7.

The dendrogram of the clustered SOM nodes and their cluster assignments are shown in Figure 8. From the
dendrogram, we make cluster classifications using a distance threshold of 1.65 and propagate the cluster as-
signments of the SOM nodes to the test data. The number of data points in the test set mapped per node is also
shown in the same figure. Histograms of the classifications for each cluster are shown in Figure 9. These clusters
were obtained in an unsupervised manner and an a posteriori analysis shows that they are in line with expert
understanding of the solar wind, magnetosheath, and magnetosphere. In Figure 9, the solar wind corresponds to
moderate density and supersonic Alfvén Mach number (log10 MA> 0), the magnetosheath has the largest den-
sities and shocked Alfvén Mach number (log10 MA 0), and the magnetosphere has the lowest densities and
subsonic Alfvén Mach number (log10 MA< 0). The Alfvén Mach number is used as a loose metric of success in
that these regions can largely be distinguished with it.

Figure 6. 2D heatmaps of the test data as seen through the Self‐Organizing Map. In the U‐matrix, plotted in the top left, nodes are colored according to their distance to
the nearest neighbors: the lighter nodes are more similar to the neighbors than darker nodes. Note that neighbors here is defined in the square topological sense; nodes in
the corners only have two neighbors, nodes along the rest of the perimeter have three neighbors, and all other nodes have four neighbors. The fewer neighbors among
those on the perimeter means that there will usually be less variance among them such that the perimeter nodes have a lower (lighter) U‐matrix value. A region of dark
gray nodes partitions the U‐Matrix into two areas of lighter color in the top left and bottom right. This means that there are two relatively homogeneous groups of nodes.
To interpret what groups of data these nodes represent, we can look at the feature maps in the remaining plots. In these plots, the average feature value per node is
depicted as a heatmap. It is apparent from the feature maps that the group of nodes on the left side of the U‐Matrix correspond to regions of low density and high
temperature. The nodes to the right correspond to moderate‐to‐high densities, low‐to‐moderate temperatures and negative values of VX.
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The clustering of the SOM nodes in PCA space is shown in Figure 10. We
previously made conjectures as to what portions of the biplot from Figure 4
are associated with the solar wind, magnetosheath, and magnetosphere, and
they are confirmed with the clustering depicted. In both the (0,1) and (0,2)
plots of Figure 10, the magnetosheath cluster has overlap with both the
magnetosphere and the solar wind clusters but the magnetosphere and solar
wind clusters have little overlap with each other, as one can expect from the
physics of the magnetospheric system. Higher order components possess less
variance and show considerable overlap as seen in the (1,2) plot. This is a
consequence of using PCA for dimensionality reduction: The first PCA
components will generally capture the majority of the variance and subse-
quent components will be less significant.

In GSE coordinates, the solar wind tends to be in the sunward (here, right-
ward) direction, the magnetosphere in the tailward (leftward) direction, and
the magnetosheath is a curved transition region between the two. The histo-
grams of log10 density and log10 AlfvénMach number of Figure 9 reflect this
and show the clustering is very effective in separating supersonic, moderate
density plasma (solar wind) from shocked, dense plasma (magnetosheath) and
very subsonic, thin plasma (magnetosphere). Note that since the Alfvén Mach
number is plotted in log10 scale, the supersonic to subsonic transition occurs
as a change in sign. Overlap between these distributions can certainly occur
and this is reflected in their histograms. Incorrect classifications are also
visible in Figure 9, such as scattered magnetosheath and solar wind classi-
fications occurring in the nightside at − 20 RE ≤YGSE ≤ 20 RE, a swath of
magnetosheath classifications at − 10 RE ≤XGSE ≤ − 5 RE, and magneto-
sphere classifications well out into the dayside. In analyzing time series, these
are generally spurious in that misclassifications occur but are relatively

infrequent (such as in Figure 11 where the magnetosheath misclassifications are correlated with jumps in VX) and
rarely part of consecutive misclassifications. We show two sample classifications of time series, one for
THEMIS‐C where the classification is exactly correct (Figure 11) and one where the majority of classifications
are correct but suffer from spurious misclassifications (Figure 12). Analyzing when MMS 1 is in the solar wind in
Figure 12, it's apparent that the magnetosheath‐misclassifications correspond to higher temperature and lower
absolute value of the velocity, as in the magnetosheath. When MMS 1 is in the magnetosheath, the solar wind‐
misclassifications correspond to higher absolute value in velocity and the magnetosphere‐misclassifications
correspond to lower density, again consistent with the characteristics of the region to which the measurements
are incorrectly assigned.

In Figure 8, it is evident that the different clusters are largely segregated spatially in the node grid but exceptions
are present. There are multiple nodes that are at best somewhat adjacent to the remainder of their cluster. Notably,
the magnetosheath cluster has nodes at grid positions (12,12) and (8,12) that are surrounded by the solar wind
cluster. The magnetosheath cluster also has a node that is surrounded by the magnetosphere cluster at (6,2) and a
vertical streak of magnetosphere‐classified nodes starting at (10,4). Results like this are not entirely unexpected as
we are analyzing observations and the magnetosheath acts as a transition region between the magnetosphere and
solar wind. We analyze the data that map to these nodes in detail in the appendix.

Lastly, we comment on our choice of SSD cutoff shown in Figure 8. In hierarchical agglomerative clustering,
spaces on the dendrogram that show long vertical drops before another cluster bifurcation indicate that the clusters
before the bifurcation are largely heterogeneous. Looking to Figure 8, this means that the two clusters that would
be formed using an SSD = 2 cutoff would be quite distinct from each other. When we analyzed the four clusters
resulting from an SSD cutoff of 1.3, inspection of this revealed that these four clusters corresponded to a solar
wind cluster, a magnetosheath cluster, and a split magnetosphere cluster into two pieces. Since an SSD = 1.65
cutoff cleanly yielded a solar wind, magnetosheath, and single magnetosphere cluster, it was decided to use that
cutoff instead. The two resulting magnetosphere sub‐clusters are shown in Section 7.1. An interpretation of why
the two magnetosphere sub‐clusters possess such a high SSD (relative to the merged magnetosheath and solar
wind) is that the variety of magnetospheric observations is comparable to the mutual variety of the solar wind and

Figure 7. The pipeline of methods in our model. Solid arrows indicate a
component of the model and dashed lines show how the optimal
hyperparameters were learned using a micro and macro training set.
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magnetosheath (or more simply, the magnetosphere, as observed by THEMIS and MMS, has almost as much
“variance” as the magnetosheath and solar wind combined).

7. Applications
7.1. Subpopulation Analysis

We show in brief the capability of subpopulation analysis with this clustering method. Since we have used a
hierarchical method to cluster the SOM nodes, we can pick any cluster and investigate the previously merged
clusters that compose it. We “unpack” the magnetosphere cluster in Figures 13 and 14 to show how distinct
magnetospheric populations were collectively recognized as the magnetosphere. From the histograms, we see that
the feature that changes most clearly between the two clusters is the Alfvénic Mach number. Note that the
subclusters of the magnetosphere in Figure 13 are not as evenly topologically separated like the original clustering
solution seen in Figure 8. This is not surprising given the large overlap in features between these subclusters seen
in the univariate histograms of Figure 14 and indicates that the variance between these two subclusters is less than
the variance between the magnetosphere, magnetosheath, and solar wind clusters, hence these two subclusters
appearing earlier in the merge order with a Ward linkage. In simpler terms, it is easier to distinguish solar wind
measurements from those of the magnetosheath or magnetosphere than it is to separate magnetospheric pop-
ulations by Alfvén Mach number.

Figure 8. Top Right: A dendrogram of the clustered nodes using aWard linkage. Separate clusters only up to the five most recent mergings are shown. We chose a cutoff
sum of square deviations from the mean (SSD) of 1.65 to extract three clusters, as shown by the horizontal dashed black line. The number of times the line intersects with
the vertical lines of clusters is the number of clusters recovered. The cluster assignments are visualized in the left image. Top Left: Cluster assignments of the Self‐
Organizing Map nodes shown on the 2D node grid. The region of low density and high temperature observed in Figure 6 has been assigned to cluster 0 (blue), the region
of low VX is largely cluster 2 (green) and the region of high density is largely cluster 1 (orange). The color scheme used to represent the different clusters will remain the
same. Bottom Row: For each cluster, the number of test points per node is shown. Note that the magnetosphere‐classified nodes (10,6), (10,5), and (10,4) within the
magnetosheath cluster contain few hits and the magnetosheath‐classified node (6,2) within the magnetosphere cluster also contains few hits. However, the
magnetosheath nodes (12,12) and (8,12) within the solar wind cluster are responsible for a sizable number of hits.
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7.2. Derived Boundary Crossings

With a model that can classify when a measurement occurs in the magnetosphere, magnetosheath, or solar wind,
we can study the time series of these classifications and infer when a spacecraft has crossed the magnetopause or
bow shock. To select crossings, we used a moving window over the time series of classifications and find where
the classification changes from magnetosheath to solar wind or vice‐versa. We considered such a change in
classification to be a crossing if all points half a window length before belong to one cluster and all points half a
window length ahead belong to the other. The changing time resolution in the THEMIS data means that we need
to consider different window lengths between MMS and THEMIS observations. A window length of 20 min was
used for MMS to give up to 10 points per half window length and a window length of 40 min for THEMIS to give
up to 13 points per half window length when the ESA is in Fast‐Survey Mode (32 spins, 96 s, going from the
magnetosheath to the solar wind) or up to 3 points per window when it is in Slow‐Survey Mode (128 spins,
6.4 min, going from the solar wind to the magnetosheath). A total of 3,047 bow shock crossings and 5,228
magnetopause crossings are extracted using these parameters. Bivariate histograms of the (XGSE, YGSE) positions
of these crossings is depicted in Figure 15 alongside a Shue magnetopause (Shue et al., 1998) and Chao bow shock
model (Chao et al., 2002) and show good agreement with respect to both.

For the bow shock crossings, we select the most recent solar wind point relative to the time of crossing and see
how they're distributed in the SOM grid in Figure 16. When cross‐comparing these with the number of counts in
the test set from Figure 8, we see that the two most activated nodes of bow shock crossings are nodes (10,11) and
(12,11). These nodes are responsible for 21.7% of the crossings but only 11.5% (training + testing) of the solar

Figure 9. Top/univariate histograms: Histograms of the log10 density and log10 Alfvén Mach number. The histogram over the entire test set is in black and the
histograms of the three clusters of the test set are represented in color. The magnetosphere is in blue (cluster 0), the magnetosheath is in orange (cluster 1) and the solar
wind is in green (cluster 2). Bottom/bivariate histograms: (XGSE [RE] , YGSE [RE] ) bivariate histograms of cluster occupancy where the sun is on the right. The leftmost
plot shows the histogram over the entire test set and each other plot shows an occupancy histogram for a particular cluster of the test set. The cluster color scheme used is the
same as in Figure 8. A darker shade of color indicates a higher count in the bivariate bin. The solid line is a Shue magnetopause and the dashed line is a Chao bow shock.
The parameters for these models are BZ = 0.15 nT, Dp = 2 nPa, MMS = 6, and β = 2.
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wind classifications. This means that the model could be used such that a solar wind measurement assigned to one
of these nodes could be flagged as having an increased probability of being a solar wind point adjacent to a bow
shock crossing. Additionally, the node with the highest count in the test set for solar wind points, node (11,12), has
only a small number of bow shock crossing points (6.2%) relative to the previous nodes.

We perform a similar analysis for the magnetosheath points relative to the magnetopause crossings. The nodes
with the highest number of counts of magnetosheath points associated with magnetopause crossings are the nodes
(9,5), (8,8), and (8,2). These are responsible for 18.2% of the magnetopause crossings but only 3.0% of the
magnetosheath classifications (training + testing). The node with the largest number of magnetosheath points in

Figure 10. Cluster assignments of Self‐Organizing Map (SOM) nodes over the first three min‐max normalized principal components of the test set. Comparing the plot
of the (0,1) component‐transformed data (center‐left plot) to the biplot over the first two principal components in Figure 4, we observe that the region on the left is the
magnetosphere, the upper right is the magnetosheath, and the lower right is the solar wind. The marginal histograms of all clusters are shown along the diagonal using the
same bin ratio (100 bins for data and 25 for SOM nodes) as in Figure 5.
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the test set, node (10,9) at 3.6%, only contains 15 magnetosheath points of the crossings, or 0.29% of the
magnetopause crossings. These three nodes could be used to flag possible magnetopause crossings.

7.3. Identifying Bursty Bulk Flows

Bursty Bulk Flows (BBF) are earthward‐moving plasma flows in the magnetotail that are often characterized by
large speeds toward Earth (hence a large, positive VX component), dipolarizations, depletions in density, and
increases in temperature and are an important process in the earthward transport of mass, energy, and magnetic
flux in the magnetosphere (Angelopoulos et al., 1994). Detecting a dipolarization in magnetic field data alone is
inherently a time‐dependent comparison, but detecting large VX components can be done in a time‐independent
manner. Using the feature maps from Figure 6, we see that nodes (0,11) and (3,12) are magnetosphere‐classified
nodes that have large average VX values of almost 100 km/s. Thus we can use these nodes to identify possible
BBFs. A data set of BBFs as observed by MMS from 2017 to 2021 was created by Pitkänen et al. (2023), and they
show two examples in their paper. We show that the BBF of their first example corresponds to many activations of
the (0,11) node in Figure 17. Not every activation corresponds to a BBF, but a rolling window method counting
the number of activations could be used to flag possible BBFs.

7.4. Identifying Hot Flow Anomalies and Foreshock Bubbles

Hot Flow Anomalies (HFA) and Foreshock Bubbles (FB) are transient phenomena that are often observed in the
ion foreshock. HFAs form from the interaction of a tangential discontinuity with the bow shock and can result in
particle energization, diminished density and magnetic field, and flow turning sunward (Omidi & Sibeck, 2007;
Schwartz et al., 1985). FBs are instead formed prior to this interaction but can possess similar characteristics of

Figure 11. THEMIS‐C measurements from 2008 to 07‐05 to 2008‐07‐06. The temperature and density are in log10 scale. The
classifications are shown in the bottom plot with the same cluster color scheme as Figure 8. The model successfully classifies
the solar wind, magnetosphere, and magnetosheath measurements according to our visual verification. Noticeably, it also
catches the “blip” when THEMIS‐C is briefly in the magnetosheath before again crossing the bow shock and going back into
the magnetosheath at 14:00 UT.
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Figure 12. MMS 1 measurements from 2018 to 12‐10. The plot structure is the same as Figure 11. MMS 1 crosses the bow
shock at about 8:00 UT and the magnetopause shortly after 13:00. The majority of the classifications prior to crossing the
bow shock are solar wind, but there are a number of incorrect and spurious magnetosheath classifications that occur with
sharp increases in VX (as indicated by the black arrows) as well as one magnetosphere classification around 10:30 UT. After
8:00 UT, the majority of classifications changes to magnetosheath with rarer solar wind and magnetosphere classifications
occurring. In the interval when MMS 1 is in the magnetosheath, magnetosphere misclassifications correspond with sudden
drops in density measurements.

Figure 13. Like Figure 8 but only focusing on the magnetosphere cluster. Right: A dendrogram showing the merge order of
the magnetosphere cluster. This tree is a subset of the dendrogram in Figure 8. We use a cutoff SSD of 1.2 and extract two
clusters from the magnetosphere cluster. Left: Subcluster assignments of the Self‐Organizing Map nodes based on the
distance chosen in the dendrogram. The nodes that did not belong to the magnetosphere cluster are masked out in black and
assigned a label of − 1. Looking back to the feature maps in Figure 6, we can see that the blue cluster (0) is related to higher
subsonic Alfvén Mach number and the orange cluster (1) is related to lower subsonic Alfvén Mach number.

JGR: Machine Learning and Computation 10.1029/2024JH000221

EDMOND ET AL. 15 of 26

 29935210, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000221, W
iley O

nline L
ibrary on [01/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Figure 14. Like Figure 9, but analyzing only the magnetosphere cluster of the test set. Bottom/bivariate histograms: The occupancy of cluster 0 (blue) and 1 (orange) are
plotted as bivariate histograms in (XGSE [RE] , YGSE [RE] ). They cover a similar region, but cluster 1 is much less pronounced on the dayside. The solid and dashed lines
are again a Shue magnetopause and Chao bow shock using the same parameters described in Figure 9. Top/univariate histograms: The histograms of log10 density, BZ, and
log10 Alfvén Mach number are plotted in black and the cluster populations are plotted in their respective colors. As could be inferred from Figure 6, cluster 0 is related to
higher subsonic Alfvén Mach number and cluster 1 to lower subsonic values.

Figure 15. Bivariate histograms of the magnetopause (left) and bow shock (right) crossings in (XGSE [RE] , YGSE [RE] ). In both
figures, the solid line is a Shue magnetopause and the dashed line is a Chao bow shock. The parameters for these models are
the same as described in Figure 9. Many of the crossings are in line with expectations of magnetopause and bow shock
positions although a handful of errant crossings are evident, such as the magnetopause crossings at (X = − 4, Y = 7) and
(X = 5, Y = 25). Nightside bow shock crossings at X < = − 10 start to deviate from the Chao model due to the orbital bias of
THEMIS and MMS wherein the bow shock is only crossed due to its compression from higher solar wind dynamic pressure.
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low density and field strength and reduced VX/sunward flows (Omidi et al., 2010, 2020). These properties mean
that these observations could be classified as magnetosheath or magnetosphere. Thus a simple way to identify
possible HFAs and FBs using this model is to track sequential solar wind‐classified data and find gaps in the
classifications. Liu et al. (2022) compiled a list of observations of HFAs and FBs fromMMS1 and THEMIS‐A, 47
of which are from November and December 2017 of MMS1. Using the same 4.5 s resolution data set we pre-
viously prepared, we extract solar wind classification gaps of up to 2 min duration. Allowing an observation to be
within up to 30 s of an identified gap, we find that we can identify 39 of the 47 observations. An example interval
of MMS1 data containing seven HFA/FB observations is shown in Figure 18.

8. Discussion
Ours is not the only model that has attempted to classify spacecraft observations into different plasma regions.
Olshevsky et al. (2021) used a convolutional neural network trained on the ion energy distributions of MMS to
classify them as magnetosphere, magnetosheath, pristine solar wind (PSW), or ion foreshock and Nguyen
et al. (2022) used a gradient‐boosted decision tree trained on magnetic field and ion moments of a variety of
spacecraft to classify them as magnetosphere, magnetosheath, and solar wind classes. Breuillard et al. (2020) also
used a convolutional neural network on MMS measurements of the magnetic field components B and magnitude
B, the ion velocity components V and magnitude V, the ion density, and the parallel, perpendicular, and total ion
temperatures to classify them into PSW, ion foreshock, bow shock, magnetosheath, magnetopause, boundary
layer, magnetosphere, plasma sheet, plasma sheet boundary layer, and lobe.

Olshevsky et al. (2021) created a labeled data set and has comparable classes to our model, so we have made
comparisons with their model and data. They curated two month's worth of MMS1 data, covering November and
December 2017 to the total of 469k points and created two models. One of their models was trained on the
November 2017 data and tested against the December 2017 data and the training and testing were reversed for the
other. They did not use the full data sets for training and instead used about ∼25k points each for November and
December, making sure to evenly sample from the four classes to avoid class imbalances. We use their better
performing model, which was trained on December 2017 and tested against November 2017, as a comparison. We
prepared both magnetic field and ion observations (averaging the magnetic field measurements to the latency of
the ion observations at 4.5 s resolution) and assigned their labels to our prepared data set of 467k points, dis-
carding the 2k unrecognized points. Since their model relied on correctly classifying the ion sky maps, they
anticipated that complex mixing of distributions could occur at the magnetopause and bow shock, and so any data
that indicates distribution mixing was assigned to the class “Unknown,” comprising about 15% of their data set.
We mask these points out when comparing the accuracy of these models.

As explored in a previous section, the hierarchical capability of our model means that we can further derive sub‐
classes from our original classification. To directly compare against the model of Olshevsky et al. (2021), we will
unpack our solar wind cluster into two sub‐clusters and regard one as the PSW and the other as the ion foreshock.

Figure 16. For each magnetopause (bow shock) crossing, we select the most recent magnetosheath (solar wind) point. Each
point maps to, or “activates,” some node in the Self‐Organizing Map. The distribution of these counts is shown for the
magnetosheath points for the magnetopause on the left and the solar wind points for the bow shock on the right. For the
magnetosheath points, the most activated nodes are at positions (9,5), (8,8), and (8,2) and are together responsible for 949
crossings. For the solar wind points, the most activated nodes are at positions (10,11) and (12,11) and are responsible for 660
crossings.
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To compare model performance in our 3‐class classification, we fold together the ion foreshock and PSW labels
collectively as solar wind. Confusion matrices of the classifications of both models in both cases and their overall
accuracy for each are shown in Figure 19. For magnetosphere/magnetosheath/solar wind classification, our
model's overall accuracy (99.41%) is approximately equal to theirs (99.39%) but the per‐class accuracy varies.
Our model's accuracy for magnetosphere and magnetosheath predictions is quite high at 100% and 99.8% but our
solar wind classification is only 99.1%. The false negatives of the solar wind and magnetosheath classes are
almost entirely magnetosheath and magnetosphere labeled data at 0.9% and 0.02%, respectively. Their model's
most accurately classified category is solar wind at 99.8% followed by magnetosphere and magnetosheath at
99.1% and 98.6% and the amount of solar wind false positives is 1.4%. For magnetosphere/magnetosheath/ion
foreshock/PSW classification, our model's accuracy is only 86.7% with a per‐class accuracy of 83.0% and 76.4%
for the ion foreshock and PSW. It can also be seen that the solar wind‐labeled data that our model misclassified as
magnetosheath almost always corresponded to ion foreshock labels. Their model certainly outperforms here,
correctly classifying the ion foreshock and PSW classes at 92.4% and 98.2% accuracy. This is not surprising as

Figure 17. MMS 1 measurements from 01:30 to 02:00 UT on 2021‐08‐15 at 4.5 s resolution. The plot structure is the same as
Figure 11. The vertical blue lines here denote the magnetosphere‐classified points that mapped to node (0,11). Pitkänen
et al. (2023) identified the Bursty Bulk Flows interval as lasting from 01:39:56 to 01:42:38 UT, and 26 of the 36 points in that
2 min 42 s interval map to node (0,11).
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they used a supervised 3D convolutional neural network with a much more diverse data set of 32 × 16 × 32
features and our model is an unsupervised neural network using data with only 13 features.

Rather, it should be expressed that our model is able to achieve a similar 3‐class accuracy compared to a much
more robust model. Moreover, the most significant advantage of this model is that it utilizes a SOM's ability to
analyze data using feature maps. One approach can be similar to how we used it to flag possible BBFs, in which
there is a parameter of interest and one wants to identify other data points that have similar characteristics across
multiple features (a “node‐to‐data” method). Or the reverse can be done, where one possesses unique data and
wants to find other data like it or see if it corresponds to repeated activations of the map, like what was done in
taking observations that were adjacent to boundary crossings and analyzing what nodes were activated in
response (a “data‐to‐node” approach).

Figure 18. MMS 1 measurements from 12:00 to 13:00 UT on 2017‐12‐18. The plot structure is the same as Figure 11. The
vertical purple lines here denote a HFA/FB time as recorded by Liu et al. (2022). Six of the seven observations were
recognized with our method, the exception being the observation at 12:04:13 UT. This missed observation is still reflected in
the sequence of magnetosheath/magnetosphere classifications occurring near 12:05 UT, but is beyond our 30 s window.
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Appendix A: Analysis of Topologically Distinct Nodes
The clustering of the nodes in the SOM as seen in the top left plot of Figure 8 is largely separated, but the to-
pological overlap of classified nodes merits further investigation to reveal if the classification is correct or
improper. We analyze the anomalous node positions, namely the separated magnetosheath nodes at positions
(12,12), (8,12), and (6,2) as well as the vertical streak of magnetosphere nodes at positions (10,6), (10,5),
and (10,4).

The node at (12,12) has the largest U‐Matrix value seen in Figure 6, indicating that it is farther from its
neighbors than all other nodes in the SOM. This is not surprising since it is classified as a magnetosheath node
and is surrounded by solar wind‐classified nodes. There are about 2.18 million magnetosheath points in the test
set and 34k (1.5%) of them map to this node. Categorizing this node's data by spacecraft, we find that almost all
are MMS observations with only about 100 belonging to THEMIS. We plot the empirical probability distri-
butions of all magnetosheath and solar wind measurements in the test set in Figure A1 as well as the data
belonging to this node for comparison. From the figure, we can see that there is much more overlap with the
distributions of node (12,12) with the magnetosheath observations than that of solar wind, indicating that

Figure 19. Confusion matrices for our model (top row) and the model of Olshevsky et al. (2021) (bottom row) against the
labeled data set of Olshevsky et al. (2021) for magnetosphere (MSP), magnetosheath (MSH), and solar wind (SW)
classifications (left column) and for magnetosphere, magnetosheath, ion foreshock (IF), and pristine solar wind (right
column). Note that about 15% of their data set was labeled as being “Unknown” and these comparisons are done using only
the remaining 85%.
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although the node's position in the grid is unusual, it corresponds well with magnetosheath observations. We
believe this node's population being dominated by MMS observations is primarily due to the difference in time
resolution between MMS and THEMIS observations. The MMS data set we prepared has a higher time res-
olution, 4.5 s resolution averaged down to 1 min, than the THEMIS data set, 1.5 min in higher temperature
plasmas (magnetosphere, magnetosheath, and sometimes ion foreshock) and 6.5 min in colder plasmas (solar
wind). The mode change is not done immediately upon crossing the bow shock but rather after consecutive
observations showing higher/lower temperatures. Since these data are formed from either 32‐spin/1.5 min (on
the outbound passes where the spacecraft are going from the magnetosheath to the solar wind) or 128‐spin/
6.5 min (solar wind to magnetosheath) averages, the magnetosheath observations that correspond to this node
could be more uncommon for THEMIS observations. These data are somewhat uncommon magnetosheath
observations as seen in the node distributions relative to the distributions of the magnetosheath and solar wind
classified data in Figure A1 in which they tend toward ends of the VY and temperature distributions. Overall,
this uniqueness in MMS observations for this particular node could be due to the higher time resolution that is
unavailable to THEMIS.

Node (6,2) is another topologically isolated magnetosheath node that also possesses a very high U‐Matrix
value, except that this one is surrounded by magnetosphere‐classified nodes. It is responsible for only
about 7.7k (0.35%) points of the magnetosheath‐classified data of the test set and is almost evenly split by
spacecraft with 56% points belonging to THEMIS and 44% to MMS. The empirical probability distributions
of all magnetosheath‐classified and magnetosphere‐classified data in the test set are plotted alongside the
observations mapped to this node in Figure A2 and multiple distinctions can immediately be made: data
mapping to this node exhibit more magnetosheath characteristics in velocity, density, and temperature and
also possess high magnetic field magnitudes. It seems correct that this node is classified as magnetosheath and
the sparsity of points mapping to this node is understood in the context that magnetosheath observations
possessing such large magnetic field magnitudes is relatively rare. The large U‐Matrix value is justified with
these observations.

Node (8,12) is diagonally topologically adjacent to the magnetosheath cluster but otherwise surround by solar
wind nodes. This SOM uses a square topology, so this diagonal proximity does not factor into its U‐Matrix value.
It maps 68k (3.1%) points from the magnetosheath‐classified data of the test set with 11% being THEMIS ob-
servations and 89% being MMS. The VX, VY, log10 temperature, and log10 density empirical probability
distributions of the data mapping to this node are shown in Figure A3 alongside all magnetosheath‐classified and
solar wind‐classified test data. They indicate magnetosheath observations with respect to the VX and VY dis-
tributions, but the log10 temperature and log10 density distributions somewhat resemble a blend of solar wind and

Figure A1. The VX, VY, log10 density, and log10 temperature empirical probability distributions of all magnetosheath‐classified test data are plotted along the top row
in blue. Similar features but for all solar wind‐classified test data are plotted along the bottom row, also in blue. The empirical probability distribution of all test data that
maps to node (12,12) is plotted in all plots as the orange distribution. The probability distributions are plotted here because of the large size differences between the
number of magnetosheath observations (2.17 million) and solar wind observations (883k) of the test set and number of data mapping to node (12,12) (33k).
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magnetosheath. This lack of uniform agreement across these features can explain why node (8,12) is adjacent to
solar wind‐classified nodes but the VX and VY distributions in particular indicate that it is correct to classify it as
a magnetosheath node.

Lastly, we analyze the magnetosphere‐classified nodes at positions (10,6), (10,5) and (10,4) that occur topo-
logically within the magnetosheath cluster. Together, these nodes account for 46k (0.75%) of the 6.1 million
magnetosphere‐classified points of the test set with 76% being THEMIS observations and 24% belonging to
MMS. Their VX, VY, log10 density and log10 temperature empirical probability distributions are plotted in
Figure A4 along with the distributions of all three clusters in the test set. The data that map to these nodes are
unusual in that the node distributions do not fully overlap with all of the distributions for any cluster. These data

Figure A2. The VX, B, log10 density, and log10 temperature empirical probability distributions of all magnetosheath‐classified test data are plotted along the top row in
blue. Similar features but for all magnetosphere‐classified test data are plotted along the bottom row, also in blue. The empirical probability distribution of the 7.7k
magnetosheath‐classified observations of node (6,2) are plotted in orange for each feature. The VX, log10 density, and log10 temperature distributions for this node all
align more with the magnetosheath data than that classified as magnetosphere whereas the B distribution reflects high magnitude observations. Overall, this node has
captured data with magnetosheath characteristics in velocity, density, and temperature, but also possessing high field magnitudes.

Figure A3. The VX, VY, log10 density and log10 temperature empirical probability distributions of all magnetosheath‐classified data from the test set are plotted in blue
along the top row. The solar wind‐classified test data are plotted in blue along the bottom. The empirical probability distribution of the 68k magnetosheath‐classified
observations of node (8,12) are plotted in orange for each feature. The log10 density and log10 temperature distributions of the data from this node have sizable mixing
between both magnetosheath and solar wind observations whereas the VX and VY distributions are more distinctly magnetosheath than solar wind.
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are classified as magnetosphere, but exist along the extrema of all the magnetosphere distributions shown. They
resemble the VY, log10 density, and log10 temperature distributions of the solar wind, but the VX would be quite
low for solar wind. The VX, VY, and log10 temperature distributions match up well with the magnetosheath
distributions, but the log10 density is conspicuously low. Across all of the clusters, the measurements have much
more in common with magnetosheath observations than magnetosphere or solar wind and are likely mis-
classifications. A time series of MMS1 observations containing many points that map to one of these nodes is
shown in Figure A5. The magnetosheath plasma is of relatively low density, reflective of how these nodes are
misclassified as magnetosphere. These nodes are responsible for 0.50% of the total test set.

Overall, the magnetosheath cluster has nodes in several aberrant positions in the SOM grid in which they were
surrounded by nodes belonging to other clusters. Investigating these nodes in detail, however, has shown that the
data correspond well with magnetosheath observations and are deserving of being classified as such. It was also
seen that three magnetosphere‐classified nodes are likely misclassified and should be recognized as magneto-
sheath. These three nodes contain few points (46k points, or 0.50% of the test set), together containing slightly less
than the average number of test points per node (47k), and so do not significantly impact the strength of the
results. Furthermore, it should be noted that such a misclassification occurred between the magnetosheath and the
magnetosphere and that the separation between solar wind and magnetosphere plasma is quite distinct in the
cluster solution seen in the top left of Figure 8.

Figure A4. The VX, VY, log10 density and log10 temperature empirical probability distributions of all magnetosheath‐, magnetosphere‐, and solar wind‐classified test
data are plotted in blue along the top, middle, and bottom rows, respectively. All test data that map to nodes (10,6), (10,5) and (10,4) are collectively plotted here as the
orange empirical probability distributions. These data are anomalous and exhibit characteristics found in all magnetosheath, magnetosphere, and solar wind
observations. The VY, log10 density, and log10 temperature align well with the solar wind distributions, but the VX distribution is far too low. The VX, VY, and log10
temperature distributions correspond with magnetosheath observations, but there are very low densities. All of these distributions seem to have the least in common with
the magnetosphere cluster, being along the extrema in all cases.
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Data Availability Statement
The data set used for our model, the resulting crossings, and the MMS1 data set that we joined with the labels of
Olshevsky et al. (2021) can be found in a Zenodo repository at Edmond et al. (2024a). The models, which have
been serialized using Python's pickle module to allow them to be saved to and loaded from a hard disk, can be
found in a separate repository at Edmond et al. (2024b). We have made a python package, GMClustering, that will
easily make classifications and is pip‐installable directly from its github repository at https://github.com/jae1018/
GMClustering. It includes both an example python driver file and a small Jupyter notebook to showcase its use.
Our modeling used various numerically‐oriented python packages and we include the versions of those most
relevant below.

• Numpy (Harris et al., 2020): 1.24.3
• Scikit‐Learn (Pedregosa et al., 2011): 1.3.0
• XPySom (Mancini et al., 2020): 1.0.7
• Pandas (McKinney, 2010): 2.0.3
• SciPy (Virtanen et al., 2020): 1.11.1

Figure A5. MMS 1measurements frommidnight to 13:00 UT on 2020‐12‐04. The plot structure is the same as Figure 11. The
transparent vertical blue lines indicate that the measurement at that time maps to the (10,6), (10,5), or (10,4) node. MMS1 is
measuring low‐density magnetosheath plasma from midnight to 8:30 UT and from 10:00 to 11:00 UT. 473 points (84.3%) of
the magnetosphere‐classified data in the midnight to 11:00 UT interval map to one of these nodes. These 473 points are also
almost 1% of all data that map to these nodes.
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