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A Brief History of Global MHD Simulations

� 1978: First 2d simulations by Leboeuf et al. (so we are close
to the 20

���
anniversary).� Early 80's: First 3d simulations (Brecht, Lyon, Wu, Ogino).� Late 80's: Model refinements (FACs, ionosphere, higher res-

olution, fewer symmetries).� Early 90's: Long geomagnetic tails, refined ionosphere mod-
els.� Mid 90's: ISTP is well underway, modeling has become part
of the missions, first comparisons with in situ space obser-
vations and ground based observations. Beginning of quan-
titative modeling.� Late 90's: Global modeling has become an integrated part
of many experimental studies. Models provide an extension
to spatially limited observations and help us to understand the
physics.
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Simulation geometry and grid

� Simulation boundaries should be in supermagnetosonic flows,
i.e.,

�
18 ��� from Earth on the sunward side,

�
200 ���

in the tailward direction, and
�

50 � � in the transverse di-
rections.� Numerical grids:	 uniform cartesian: lowest programming overhead, lowest

computing overhead, no memory overhead, easiest paral-
lelization, near perfect load balancing, not adaptable

	 stretched cartesian: low programming overhead, low com-
puting overhead, no memory overhead, easiest paralleliza-
tion, near perfect load balancing, somewhat adaptable
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grids (continued)

	 nested cartesian (can be self-adapting): medium to high
programming overhead, small computing overhead, medium
memory overhead, difficult to parallelize and load balance,
internal discontinuities, very adaptable

	 non-cartesian with regular topology: medium programming
overhead, small computing overhead, low memory overhead,
parallelizes and load balances like regular cartesian grid,
somewhat adaptable
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grids (continued)

	 non-cartesian with irregular topology (can be self-adapting):
high programming overhead, high computing overhead, high
memory overhead, difficult to parallelize and load balance,
smooth internal transitions, very adaptable, can use FEM
technology

	 UCLA-GGCM grid:
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Equations� non-conservative (primitive variables)

465487:9 ;=< >@? 5BADC4EA487F9 ;G? A >H< CIA ;J?LKM C <ONGPQ?RKM C�SUTWV4 N487X9 ;G? A >H< C NX;ZY[N\< > A46V487 9 ;O< TW]< > V 9 ^] 9 ; A_T`V Pba SS 9 < TWV
	 no strict numerical conservation of momentum and energy

possible	 numerical difficulties with convective derivatives	 leads to numerical difficulties with strong shocks, errors in
RH conditions and shock speed
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Equations (continued)� full conservative465487:9 ;=< >@? 5BADC465BA487 9 ;=< >dc 5BAeA PfN8g ;J? VhV ; Kikj i g Cml4on487 9 ;O<p>�cq? n PfN CIA P ]rT`Vsl46V487 9 ;O< TW]< > V 9 ^] 9 ; A_T`V Pba SS 9 < TWVNt9 ?uYv;Jw C/xyn ; Ki 5Bz i ; Ki j i|{
	 allows strict numerical conservation of mass, momentum

and energy	 numerical difficulties in low } regions (negative pressure
possible because N becomes difference of large numbers)
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Equations (continued)� Gas dynamic conservative4E5487:9 ;=< >@? 5BADC465BA487 9 ;=< >@? 5BA~A P�N8g C P SUTWV4\�487G9 ;=< >[?�c � P�N l�A�C P S > ]46V487�9 ;O< TW]< > V 9 ^] 9 ; A_T`V Pba SS 9 < TWVNr9 ?uYs;�w C c � ; Ki 5Bz i l
	 compromise	 allows strict numerical conservation of mass, momentum

and plasma energy, but no strict conservation of total en-
ergy	 low } regions pose no difficulty	 could be combined with full conservative scheme by in-
tegrating both energy equations and using a }̀ switch'
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Anomalous resistivity� Current driven instabilities:	 ion sound instability:av� ?��R�k��� C i �o�I? zH� �H�/� C ?u�\�����6� C	 electron–cyclotron drift instability:av��� i�/� �L? z�� � z � CI�	 lower hybrid drift instability:av��� i� ?u� � ��� � C ? z � � z � C i ��� �	 MTSI/KCSI/IWI:��� � � ��� ^q �^B^¢¡£;¤^¥ �^B¦ a � wR^[§@¨ 7,© ª�T wL^[§[«*¬	 simulation studies [Tanaka, Brackbill]: av� z i�	 observations [Cattell et al.]: �� � ^q ®w¯ k R LwR^	 most known anomalous resistivity models predict a°� ±k²
with Nt9 ª

the most likely value� Parameterization:av9�³\±d´ i if ±d´ ��µ
, 0 otherwise (1)± ´ 9 ¶ ± ¶¸·¶ j ¶ P¤¹ (2)
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Boundary conditions� Sunward side:	 Arbitray fixed or time dependent	 Measured solar wind data	 Problem with j»º : Three dimensional structure of the so-
lar wind needs to be known because< > V 9Q^½¼ 	 ¾ >@? j�¿ ² � ��À ��Á  ; j�Â,ÃÅÄ¢Æ � ��À �ÅÁ  C 9�^	 implies that j º = j Æ cannot change if solar wind param-
eters are independent of Y and Z.	 solution: find ¾ , difficult with single solar wind monitor,
boundary normal methods (minimum variance, ...) can be
applied� All other sides:	 free flow conditions for plasma and transverse

V
compo-

nents: 4~Ç4 ¾ 9�^
	 normal component of

V
: follows from < > V 9�^� Inner boundary (ionosphere): later
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Initial conditions� Magnetic field:
Superposition of dipole with mirror dipole to create j�º 9 ^
surface sunward of Earth, then replace field on sunward side
with initial solar wind field.

� plasma:
cold (5000 È K), tenous (0.1cm § � ), uniform
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Ionosphere model� Geometry and mapping:
pick field aligned currents (±dÉ ), at the inner boundary (2 - 4� � ) from the MHD grid and map along dipole field lines onto
the ionosphere:

� covers latitudes from 58 È to 90 È .� very high
z�Ê

inside inner boundary, solving the MHD equa-
tions is not necessary.� Use mapped FAC, precipitation parameters to solve for the iono-
spheric potential Ë .� Map potential back to inner boundary and use as boundary
condition for flow: A 9 ?,;=< Ë C�T¯V¶ j ¶ i
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Ionosphere model (continued)� Limiting cases:	 Ë 9 ^ 9 	 ] 9 ^ 9 	 A 9 ^ (equivalent to infinite
ionospheric conductance): field lines are tied in the iono-
sphere, no convection in the ionosphere, and convection
in the magnetosphere inhibited.	 ± É¯Ì ^ (zero conductance): Field lines slip free through
the ionosphere and Earth.	 in reality the ionosphere has a finite conductance and field
lines are dragged through the ionospheric plasma, dissi-
pating energy.� Potential equation, solved on each hemisphere separately:< >�Í >�< Ë 9 ;Î±dÉ¢ÏÑÐ�Ò�Ó

� Boundary condition: Ë (equator)=0.� Conductance tensor: Í 9 ÔJÕ×ÖØÖ Õ×ÖIÙ; Õ ÖIÙ Õ ÙÚÙ~ÛÕ×Ö�Ö 9 ÕÝÜÏÑÐÞÒ i Ó ß Õ×Ö,Ù 9 ÕÝàÏÑÐ�Ò�Ó ß ÕÎÙmÙ 9 Õ Ü
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Ionosphere model (continued)� Ionospheric conductances, 3 primary sources:	 Solar EUV [Moen and Brekke, 1993]:ÕÝà 9âá ÈÑã « �K ÈÑã ¨ ?�^q �¦UweäRådÏ@æpPç^¥ �¡�èWäLåBÏ Kêé i æ CÕÝÜ 9âá ÈÑã ëIìK ÈÑã ¨ ?�^q �íHèWäRådÏ@æpPç^¥ �îBíïäLåBÏ Kêé i æ C	 Parallel potential drops [Knight, 1973; Lyons et al., 1979]:· Ë 9âð ñsò�ó~?Å^ ß ;Î±dÉ Cð 9 � i�ô �õ ªHö �r�m÷¢�\�	 Electron acceleration:á � 9 · Ë É ± É ß ø È 9 � · Ë É	 Pitch angle scattering:á � 9 ô �R?Ø÷¢�\�ù� ªHö �r� C|úû ß ø È 9â÷¢�\�	 Hall, Pedersen conductance from e - precipitation: [Hardy
et al., 1987]: ÕÝÜ 9 ü¸è¢^ ø È �q?ÑwLý�P ø iÈ C�þ á KÅé i�Õ à 9Q^¥ ÿè@¡ ø « é��È Õ Ü
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MHD numerics� Time differencing	 Model equation: 4on487 9 ;=< > � ? n=C
	 Explicit time differences, predictor - corrector scheme (sec-

ond order accurate):n Æ�� úû 9 n Æ ; wª · 7 < > � ? n Æ Cn Æ�� K 9 n Æ ; · 7 < > � ? n Æ�� úû C	 Explicit time differences, leap - frog scheme (second or-
der accurate):n Æ�� K 9 n Æ § K ; ª · 7 < > � ? n Æ ß n Æ § K C	 Stability criterion (Courant-Fridrichs-Levy, CFL):· 7  Á º�� µ ñvÐ�Òe? · � ß · � ß · 	 C¶ A ¶ P z�
�	 CFL criterion can be very restrictive, · 7  Á º must be sat-
isfied everywhere in the simulation domain	 Implicit time differencing schemes:n Æ�� K 9 n Æ § K ; · 7 < > � ? n Æ�� K ß n Æ ß n Æ § K ß  R k  C	 Implicit time differrencing can be unconditionally stable, but
generally requires the solution of large linear systems, too
expensive and impractible
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MHD numerics (continued)� Spatial discretization:	 Finite differences (FD).	 Finite volume (FD), reduces to FD on cartesian grids.	 Finite element (FEM), mostly used for non - cartesian ir-
regular grids.� Conservative FD:	 Model equation: 4on487 9 ;=< > � ? n=C	 discretize as:4on487 9 ; ?�� � � úû�� � ? n=C ;�� � § úû�� � ? n=CÑC � · �; ?�� � � � � úû ? nOC ;�� � � � § úû ? nOCÑC · �	 numerical fluxes:

� � � úû � � 9��:?, R k  ß n � § K � � ß n � � � ß n � � K � � ß  k R  C� � � � � úû 9��:?, R k  ß n � � � § K ß n � � � ß n � � � � K ß  k R  C	 numerical fluxes must be consistent with the physical fluxáX? nOC : �X? n ß  R k  ß n ß n ß  k R  ß n=C 9âáX? nOC
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MHD numerics (continued)� Schematic of conservative FD:
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� This differencing is equivalent to (and therefore conservative):4487(')'*',+ n.-0/ 91'*' � � -32
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MHD numerics (continued)� Examples of numerical fluxes:	 second order central:

� � � úû 9 wªo?ØáX? n � C Pçá:? n � � K CÑC
	 fourth order central:

� � � úû 9 ¨K i ?êáX? n � C P áX? n � � K CÑC; KK i ?êáX? n � § K C PçáX? n � � i CÑC	 Lax scheme:

� � � úû 9 wª�?êá:? n � C P áX? n � � K CÑC ; wªo? n � � K ; n � C	 Two step Lax Wendroff scheme: Use Lax scheme for pre-
dictor, and second order central for corrector.	 Rusanov scheme:

� � � úû 9 Ki ?ØáX? n � C Pçá:? n � � K CÑC; Kë ? ¶ z � ¶ P ¶ z � � K ¶ Pb� � P�� � � K C ? n � � K ; n � C	 Godunov schemes: solve a Riemann problem (i.e. the de-
cay of a step function into waves) at the cell interface
and compute the fluxes directly from the wave propaga-
tion. Accurate for gas-dynamics, but difficulties in MHD:
degenerate eigenvector because of < > V 9�^ .
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MHD numerics (continued)� Error terms:

· � 4 n487 9 ;h?�� � � úû ;�� � § úû CP54 K ? · � C i76 û6 º û áX? nOC P�8 K ? · � C � 6:96 º 9 á:? n=CP54 i ? · � C ë 6�;6 º ; áX? nOC P�8 i ? · � C « 6:<6 º < á:? n=CPb k R 	 error terms with even derivatives cause diffusion	 error terms with odd derivatives cause dispersion	 central difference schemes have no diffusion, but disper-
sion, big problem at shocks and discontinuities	 first order schemes are less dispersive, but very diffusive	 see examples: wiggles at discontinuities� Monotonicity: A scheme is called monotone if it lets no new

extrema develop in the solution (that is exactly what we want).
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MHD numerics (continued)� Harten's (Di)Lemma:
A monotone scheme is at most first order accurate!
Thus, a globally monotone scheme will always be very dif-
fusive.� Solution to Harten's (Di)Lemma:
Hybridize the numerical fluxes: Use first order numerical flux
( � � ) where a new extremum might develop (like at a shock),
and use high order fluxes ( � � ) where the solution is smooth.

� � � úû 9>= � � úû � �� � úû PQ?�w ;?= � � úû C � �� � úû	 Obviously, ^ � = � w . = can be a function of anything,
but generally depends on gradients of the solution.� The switch function = is called Flux Limiter. There is no op-

timal flux limiter. A few choices:	 Hartens “edge condition” flux limiter	 vanLeer's flux limiter	 Flux Corrected Transport (FCT)	 Total Variance Diminishing (TVD) schemes (the monotonic-
ity constraint is somewhat relaxed)	  R k 
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MHD numerics (continued)� Keeping divergence of
V

zero	 < > V 9 ^ is an initial condition, < > V is conserved by
Faraday's law:< > 46V487 9 4 ?ê< > V:C487 9 ;=< >�< TW] 9Q^	 < > V cleaning, projection method: solve< i Ç 9 ;G?ê< > VvC
and correct the field: V ´q9 V P < Ç
requires the numerical solution of a Poisson equation (ex-
pensive). Can only be as good as the solution of

Ç
.	 <p> V convection: Effectively modify equations so that <p>V

convects through the system (Gombosi):- ?ê< > V:C-B7 9Q^<p> V must convect out of the system (inner magnetosphere?).	 Use numerical <p> and < T
operators with < >H< TA@ 9�^	 Use a magnetic flux conservative scheme that keeps< > V 9Q^ to roundoff error.
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MHD numerics (continued)	 magnetic flux conservative scheme (continued)
place the magnetic field components on the center of cell
faces: ? j�º C � � úû � �B�DC , ? jFE C � � � � úû � C , ? jHG C � � �I�DC � úû	 and the electric field (a numerical flux) on the centers of
the cell edges:? ø º C � � � � úû � C � úû , ? ø E C � � úû � �B�DC � úû , ? ø G C � � úû � � � úû �DC

[Evans and Hawley, 1987].

J(KLNMPO�QSRUT VST W
X LYMZO�QSR J([L!T V\MPO�QSRUT W

X V\MPO�QSR

J^]L!T VST W,MZO�Q_RX W,MPO�Q_R

` ] LYMPO�QSRUT V\MZO�Q_RaT W

`b[LNMPO�Q_RaT VST W,MPO�Q_R
` K L!T V MPO�Q_RaT W,MPO�QSR

c�d Lfe\ghVBe i�Wkj
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MHD numerics (continued)	 magnetic flux conservative scheme (continued)
then: 4487 ? j º C � � úû � �I�DC 9cq? ø E C � � úû � �I�DC � úû ;�? ø E C � � úû � �I�DC § úû l � · 	; cq? ø G C � � úû � � � úû �DC ;J? ø G C � § úû � � � úû � C l � · �	 analogous for j E and j G	 By advancing the field components in this way on all 6
cell faces and summing up it follows:44 7 ')' � � ��� Ë - �p99 · � · 	 ? 4 j º487 C � § úû P · � · 	 ? 4 j º487 C � � úû P · � · 	 ? 4 j E487 C � � úû PJ R k 9 cq?*? ø E C � � úû � �B�DC � úû ;J? ø E C � � úû � �I�DC � úû C P?Ñ? ø E C � � úû � �B� C § úû ;�? ø E C � � úû � �B�DC § úû C P� k R  l · � · � · 	9�^
thus Ë = const.

	 The field can be initialized divergence free by using a vec-
tor potential l in place of

]
.
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MHD numerics (continued)� How to handle stretched grids:	 grid coordinates given by analytic function:� ?_m ß ± ß ÷ C , � ?_m ß ± ß ÷ C , 	 ?_m ß ± ß ÷ C , then:44 � á:? � ß � ß 	 C 99 4 á4 m 4 m4 � P 4 á4 ± 4 ±4 � P 4 á4 ÷ 4 ÷4 �9 4 á4 m�n
4 m4 �(o § K P 4 á4 ±pn

4 ±4 �qo § K P 4 á4 ÷rn
4 ÷4 �^o § K	 analogous for y and z derivative.	 particularly simple for stretched grid:44 � á:? � ß � ß 	 C 9 4 á4 mn 4 m4 �^o § K44 � á:? � ß � ß 	 C 9 4 á4 ±)n 4 ±4 �so § K44 	 áX? � ß � ß 	 C 9 4 á4 ÷tn 4 ÷4 	uo § K
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Validation� Compare with non-trivial solutions of the MHD equations (few
available):	 shock tube problems (check for RH conditions, expansion

shocks, flux limiters). Table of shock tube parameters used
by ISTP:

v " v $ w " wI$ x y " x yS$ x z " x z $ x\{ " x\{|$ }�y " }�yS$ }�z " }�z $ }�{ " }�{~$ �
1 0.125 1 0.1 0 0 0 0 0 0 0 0 0 0 0 0 1.4
1 0.125 100 0.1 0 0 0 0 0 0 0 0 0 0 0 0 1.4
1 0.125 1 0.1 0 0 0 0 0 0 0.75 0.75 0 0 1 -1 2
1 0.125 1 0.1 0 0 0 0 0 0 0 0 10 0.5 10 0.5 2
1 0.125 100 0.1 0 0 0 0 0 0 0.75 0.75 0 0 1 -1 2
1 0.125 100 0.1 0 0 0 0 0 0 0 0 10 0.5 10 0.5 2
1 0.125 1 0.1 0 0 0 0 0 0 0 0 0 0 0.1 0.1 2

	 2D/3D self-similar solutions by Low [1982, Ap. J.].� V
convection test to evaluate <p> V 9Q^ : initialize a non-trivialV
field from < T l such that

V 9�^ in most of the domain
(magnetic bubble) and convect with � =(

/ º ,0,0). < > V 9 ^
violation will become evident by j º sticking to the grid:46V487 9 ;O< T`]	 -[V-B7 9 � ?ê< > V:C� Convergence test: run same problem twice: with highest res-
olution possible and with factor two lower resolution. The re-
sults should be qualitatively the same and quantitatively sim-
ilar.� Reality test: drive model with observed solar wind and IMF
and compare results with in situ observations.
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Computer issues� Parallel implementation on MIMD (Multiple Instruction - Mul-
tiple Data) computers:	 domain decomposition, guard cells, message passing:

	 extra nodes for: ionosphere(1), I/O(1), restart file manager(1),
and for things to come
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Computer issues (continued)

	 runs on IBM/SP2, CRAY/T3E, workstation (Beowulf) clus-
ter, ...	 language: f77, macro preprocessor, spag, ftnchek.	 f90/HPF not mature enough and/or generally available, would
require rewriting the code.	 using MPI message passing library, either native or MPICH.	 excellent scalability:
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	 computing chore: � 2000 Flop/gridpoint/timestep.	 current machines: � 100 MFlop/s.	 realtime: 60 nodes, 10 � cells.	 output: several GB per run.
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Things to do, given unlimited time and resources� Adding more physics: inner magnetosphere, ring current	 bounce aqveraged drift equations:-0� C-B7 9 ? 4487ÝP A C >H< C�� C 9 ^- a C-B7�9 ? 4487×P A C >H< C a C 9 ^A C 9 j § i,� § KC ? � C ]rT×V P � C V T < / § i é � C� C 9 � C / i é �a C 9 ô C // 9 � - ¬�� j
[Harel et al., 1981; Wolf et al.,1983; 1991; 1993]	 magnetic field: dipole, .....	 plasma represented by macroparticles of constant

� C anda C	 32 log spaced energy levels, 0.1 to 300 keV	 currently one species: protons	 plasma loss due to pitch angle scattering: 10% of strong
pitch angle scattering limit for protons	 plasma loss due to charge exchange with exospheric hy-
drogen:[Smith and Bewtra, 1978; Anderson et al., 1987 ]
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Things to do ..... (continued)� Inner magnetosphere (continued)	 plasma loss due to Coulomb drag with plasmaspheric elec-
trons: [Fok et al., 1991]	 10 � by 0.1 � � grid in the magnetic equator, 1.2 � L �
7	 0.1 to 0.5 million macroparticles per species, 1 proces-
sor	 long timesteps ( � 1 minute)
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Things to do ..... (continued)� Coupling with thermosphere - ionosphere circulation models (CTIM,
TIECGM, .....)	 need: ionospheric parameters (±dÉ , precipitation)	 provide: better ionospheric conductances, potential (neu-

tral wind coupling, flywheel effect), ionospheric outflow.� Resolution, resolution, resolution	 basic scaling law: T � N ë 9 � § ë , but computer power
grows exponentially with time:
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