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ABSTRACT

We have used our global MHD model to assess the importance of small scale
processes for magnetospheric dynamics. The comparison of two simulation runs,
one with, and one without anomalous resistivity, and with otherwise identical
parameters, shows that a substorm only develops when anomalous resistivity
is present. A similar comparison of a simulation run with a self-consistent
ionospheric conductance model and a run in which the ionospheric conductance
was increased, shows that increased ionospheric conductance can likewise prevent
the occurrence of a substorm. We conclude that the proper parameterization of
these small scale processes is important for global modeling of the magnetosphere.
Our results also show that substorm models must account for localized processes,
like the occurrence of anomalous resistivity, as well as for the response of the
ionosphere.

I. INTRODUCTION

Interactions between the solar wind and magnetospheric plasmas are dom-
inated by collisionless processes. Because the processes are collisionless, these
plasmas and their interactions should in general be characterized by the Vlasov-
Maxwell equations. However, in many instances, especially when the spatial
scales under consideration are large compared to the local ion gyroradius and the
temporal scales exceed the ion gyroperiod, the much cruder MHD description
suffices. Indeed, many theoretical studies, experimental analyses, and numerical
simulations are based on the relatively simple MHD description.

The global modeling of the Earth’s magnetosphere and its interaction
with the solar wind is an example of the successful application of the MHD
approximation. Many such models have been developed over the past two
decades [1-5], and these models have successfully reproduced many of the gross
features of the solar wind-magnetosphere interaction and the associated large scale
processes. More recently, direct comparisons between our model and observations
[6] have shown that global MHD models, when driven by measured solar wind
conditions, are capable of predicting those observations in the magnetosphere.

A closer look at the intricate structure of global MHD models shows that



they are in fact not really ideal MHD models, and that they work only because
small scale processes that cause a deviation from ideal MHD are implicitly or
explicitly included in the models. Many of the deviations from ideal MHD arise
from numerical effects; in fact there is no numerical scheme that could solve the
ideal (i.e., hyperbolic) MHD equations without introducing numerical diffusion,
dispersion, or both. However, these effects, if well understood and controlled, are
not necessarily harmful to the solutions, and may even be an essential ingredient.

One example is Earth’s bow shock. It can only exist because kinetic
processes provide enough diffusion for the shock to increase the plasma entropy
sufficiently. Therefore, in the shock transition region, the plasma cannot be
described as an ideal MHD fluid. However, when the MHD equations are
supplemented with proper diffusion terms, they contain enough of the shock
physics to describe the bow shock on the large scale.

Similarly, any numerical scheme for solving a shock transition (or any
type of discontinuity) must also employ a certain amount of diffusion. If the
scheme does not generate enough diffusion in the shock transition region, other
(unavoidable) numerical effects, like grid aliasing and wave dispersion, will
dominate. These will effectively destroy the physical solution by creating large
amplitude, high frequency waves in the vicinity of the discontinuity

�
. As a

consequence, discontinuities can only be obtained in simulations by effectively
altering the MHD equations and adding diffusive terms. This can be done in
different ways, either by using difference equations that have diffusive error terms
(for example the upwind scheme, or the Lax-Wendroff schemes [8]), or by adding
diffusive terms explicitly. In fact, the major difference between simulation models
is the way in which the diffusion terms are handled. The "classical" schemes,
for example the Lax-Wendroff scheme, add diffusion globally, i.e., everywhere
in the simulation domain. The obvious disadvantage is that diffusion is added
to regions where it is not desirable. On the other hand, "modern" schemes,
for example hybridized schemes like FCT (Flux Corrected Transport) and TVD
(Total Variance Diminishing) schemes [9], are very sensitive to gradients in the
solution, and add diffusion only locally, where steep gradients would otherwise
lead to severe numerical aliasing and dispersion. In regions of smooth flow,
"modern" schemes attempt to minimize diffusion. Thus, the "modern" schemes
closely mimic nature by creating diffusion just within the shock transition layer
(which is typically only 1-2 gridpoints thick), albeit for very different reasons.
The actual amount of numerical diffusion in the transition layer is of little
concern if the numerical scheme is conservative, i.e., based on the conservative
MHD equations, because conservative finite differences always exactly fulfill the
Rankine-Hugoniot jump conditions.�

A prominent example is the Leap-Frog scheme which has no numerical
diffusion, but is very dispersive. Because of the numerical dispersion it is useless
for computations that include discontinuities; an example can be found in [7].



Besides shock dissipation there is a large number of other small scale
processes that have the potential of affecting the large scale interaction of Earth’s
magnetosphere with the solar wind. In this paper we will consider two of
these processes. First, we will show the effect of anomalous resistivity on
the tail dynamics. Although numerical resistivity is present in our model and
allows for magnetic reconnection, the addition of a nonlinear resistivity term
to Ohm’s Law substantially alters the tail dynamics and leads to more realistic
results. Second, we will examine the effects of different levels of ionospheric
conductance on magnetospheric dynamics. The ionosphere is implemented as a
boundary condition for the MHD domain; and the dominating processes, such as
field aligned potential drops, electron acceleration, and ionization are inherently
kinetic and must be properly parameterized.

In the following, we will first briefly describe our model. We will then
compare three different simulation runs, one reference run with anomalous
resistivity and a fully implemented ionosphere, one in which the anomalous
resistivity is switched off, and one in which the ionospheric Hall and Pedersen
conductances are set to artificially high values. We will then discuss these results
with respect to the proper parameterization of these small scale processes.

II. THE MODEL

For this study we use a global MHD code which includes an ionospheric
model for the closure of field aligned currents. In order to accommodate the
large simulation volume with a 400

���
tail and long simulation times the

simulation code was parallelized for running on MIMD (Multiple Instruction
- Multiple Data) machines by using a domain decomposition technique. The
model solves the ideal MHD equations (modified as described below) for the
magnetosphere and a potential equation for the ionosphere. As we discussed
in the introduction, numerical effects, like diffusion, viscosity, and resistivity,
are necessarily introduced by the numerical methods. These permit viscous
interactions and also magnetic field reconnection to a limited extent. The only
explicit diffusive term is the anomalous resistivity that is included in Ohm’s Law.

The magnetospheric (MHD) part of the model is solved using a finite
difference method which is conservative for the gas-dynamic part of the MHD
equations:������
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where the symbols have their usual meaning. The
� �-�

and ( � � terms are treated
as source terms because the very low plasma 9 and the large magnetic field
gradients near the Earth do not allow the use of the full conservative form of the
MHD equations. The model of the anomalous resistivity is given by:. 	,:�; � 6 < ; � 	>= ; 6 if ; 6@?BA

0 else

< ; 6 	 C ; CEDCEFGC �IH
where ; is the local current density, F the local magnetic field, D is the
gridspacing, and

H
is a very small number introduced to avoid dividing by zero.; 6 is the normalized current density ( +
JK; 6 J 3

) that is used as a switch for the
resistivity. In places where the resistivity is switched on it becomes proportional
to the square of the local current density. Similar resistivity models have been
used in the past to model the kinetic effects that lead to anomalous resistivity [10,
11]. The parameters : and A determine the value of the resistivity and the current
density threshold that must be reached for the resistivity to be switched on. These
parameters are choosen such that the resistivity

.
is nonzero only at very few

gridpoints in strong current sheets.
The numerical grid is rectangular and nonuniform with the highest spatial

resolution near Earth (about 0.5
�L�

). It extends 30
�L�

in the sunward direction,
400

�L�
in the tailward direction and 70

�L�
in the Y and Z directions. The

gas-dynamic part of the equations is spatially differenced by using a technique in
which fourth order fluxes are hybridized with first order (Rusanov) fluxes [9,12].
The magnetic induction equation is treated somewhat differently [13] in order to
conserve 
M� � 	N+ exactly. The time stepping scheme for all variables consists
of a low order predictor with a time centered corrector, which is second order
accurate in time. The outer boundary conditions are fixed at the given solar wind
values on the upstream side. At the other boundaries we apply open, i.e., zero
normal derivative, boundary conditions.

The inner boundary, where the MHD quantities are connected to the
ionosphere, is taken to be a shell of radius 3.7

�L�
centered of Earth. The choice

of this radius is a compromise and necessitated by numerical considerations, such
as extraneously high Alfven speeds and very large magnetic field gradients closer
to the Earth. However, this choice allows for the proper mapping of all relevant
field aligned current (FAC) systems. Inside this shell we do not solve the MHD
equations, but assume a static dipole field. The important physical processes
within the shell are the flow of field aligned currents and the closure of these
currents in the ionosphere. At each time step we map the magnetospheric FACs
from the 3.7

���
shell onto the polar cap using a static dipole field. We then use

the FACs as input for the ionospheric potential equation:
 �PO �Q
 RI	M�S;�TVUXWZY\[
which is solved on the surface of a sphere with a radius of 1

�L�
. Here R denotes

the ionospheric potential, O is the tensor of the ionospheric conductance, ; T is the



mapped FAC with the downward current considered positive and corrected for
flux tube convergence, and [ is the inclination of the dipole field at the ionosphere.
The boundary condition R = 0 is applied at the equator. For the ionospheric Hall
and Pedersen conductances, ]\^ and ]\_ , which enter the conductance tensor O
[14], three ionization sources are taken into account. First, for the solar EUV
ionization we use an empirical model [15] that depends solely on the solar

3 +a`cb
cm flux ( d �"egfih ) and the solar zenith angle ( j ):
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Second, we compute the mean energy � e and energy flux d � of precipitating
electrons that are accelerated by a parallel potential drop D R in regions of upward
field aligned currents [16,17]:

d � 	 D R T C ; T C < � e 	  D R T
D R�	��M��������+ < �2; T � < ��	  6����� 4P�&���)�����

Third, diffuse electron precipitation is modeled by assuming complete pitch angle
scattering of electrons at 3.7

�L�
[18]:

d � 	 ��� � ���&���~4P����� ���� < � e 	 �����
Here,

���
,
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, and
���

are the electron density, temperature, and mass, respectively,
taken at the 3.7

�L�
shell. The conductances are then computed from the electron

precipitation parameters using the empirical relations [19]:
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Using the mapped FACs and ionospheric conductances the potential equa-

tion is solved, and the the ionospheric potential is mapped to the 3.7
�L�

shell
where it is used as a boundary condition for the magnetospheric flow by taking� 	l����
 R �P��� � F 6 .The initial conditions for the magnetic field are constructed from the
superposition of Earth’s dipole over a mirror dipole, such that F@� vanishes at   =
16

�L�
. Sunward of the plane of symmetry at 16

�L�
the field is replaced by the

initial solar wind field. This procedure ensures a divergence-free transition from
the constant solar wind field to Earth’s dipole field. The simulation box is initially
filled with tenuous (0.1 cm ¡ n ) and cold (5000

e
K) plasma of zero velocity. The

solar wind flow is switched on at the sunward boundary at time
�
=0.



III. RESULTS

In order to assess the effects of the parameterized small scale processes in
a global simulation we compare three simulation runs with identical solar wind
conditions. The solar wind density, temperature and velocity are held constant at
average values (7.3 cm ¡ n , 5

�
10
w

K and 420 km/s). The IMF is due south for the
first 60 minutes (B ¢ = -5 nT), then due north for the next 60 minutes (B ¢ = 5 nT).
After that, the IMF goes southward again (B ¢ = -5 nT) and remains so until the
end of the runs. The IMF B � and B £ components are assumed to be zero.

During the first 60 minutes the magnetosphere develops from its unphysical
initial state. The following 60 minutes of northward IMF see the magnetosphere
evolve into a quiet configuration. This does not imply that the simulated
magnetosphere reaches a steady state. In fact, an X-line that developed during
the preceding southward interval remains intact in the center of the tail while
the tail flanks are replaced by a broad and growing boundary layer. Details of
the tail morphology during times of strong northward IMF have been reported
in [5]. After the IMF turns southward again at t = 120 min, one would expect
that a substorm would develop. As we will show below, whether or not a
substorm occurs in the simulation depends critically on the parameterization of
the anomalous resistivity and the ionospheric conductances.

1.) Self-consistent ionosphere and anomalous resistivity

In this reference run we have included the self-consistent ionosphere model
and the anomalous resistivity terms that we described in section II. The parameters
for the resistivity model were set to A = 0.5 and : = 0.02. Figs. 1a through 1d
show a time sequence of the evolution of the magnetic field in the noon--midnight
meridional plane. At time t = 125 min (Fig. 1a) the southward IMF just reaches
the subsolar magnetopause. There are no changes apparent in the tail from the
previous northward IMF period. Note that the tail neutral line only exists in the
very center of the tail at this time [5]. Ten minutes later (Fig. 1b), reconnection
has begun at the subsolar magnetopause between magnetospheric field lines and
magnetosheath field lines. In the tail, the field between about -10

���
and -25�L�

has become more dipolar and the neutral line has moved a few
�L�

tailward.
After another ten minutes (Fig. 1c), the tail neutral line has moved to about -35�L�

. Earthward, the closed field line region has become stretched, which may be
interpreted as a substorm growth phase. Within the next 5 minutes, tearing occurs
in the closed field line region and a plasmoid is formed (Fig. 1d).

Clearly, these results show some proximity to typically observed substorm
features, in particular the formation and ejection of a plasmoid [20]. Also, the
ionospheric parameters (not shown here) are in basic agreement with substorm
observations. In particular, we see the development of a substorm current system
and a westward travelling surge.
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Figure 1. Time evolution of the magnetic field in the noon-midnight
meridional plane for the reference run with self-consistent ionosphere
and anomalous resistivity. The snapshots are taken at 125(1a), 135(1b),
145(1c), and 150(1d) minutes, respectively.

2.) Self-consistent ionosphere but no anomalous resistivity

Figs. 2a and 2b show the time evolution in the simulation run that does not
include anomalous resistivity, i.e., with : = 0. These two figures correspond to
the figures 1a and 1d of the reference run. The other two snapshots are not shown
here because they are almost identical with figure 2b. In this simulation run,
dayside and tail reconnection occurs because of the residual numerical resistivity.



ªa¥

ª7§

Figure 2. Time evolution of the magnetic field in the noon-midnight
meridional plane for the run without anomalous resistivity. The
snapshots are taken at 125(2a), and 150(2b) minutes, respectively.

The reconnection rate in the tail is lower than in the reference run, and as
a result less flux is carried earthward. Therefore, the size of the closed field
line region remains unchanged in time. In fact, there seems to be a perfect
balance between the dayside reconnection rate, the nightside reconnection rate,
and the transport rate by which flux is convecting back from the nightside to
the dayside. This "steady convection" configuration does not change, even when
the simulation is continued for much longer times. Although steady convection
episodes are known to occur during times of southward IMF, they are usually
initiated by a substorm [21]. Because this is not the case in the present simulation,
we believe that the tail dynamics of this simulation are not realistic.

3.) Anomalous resistivity and higher ionospheric conductance

In this simulation run we have kept the anomalous resistivity as that used
in the reference run, but have set the ionospheric Hall and Pedersen conductance]k^ and ]\_ to a constant value of 50 Siemens. This value is considerably higher
than normally observed in the ionosphere. Typical values range from some 10 ¡ �
to 20 Siemens [22]. Also, because there are no gradients in the Hall conductance,
ionospheric Hall currents vanish. The results of this simulation run are shown in
Fig. 3a-3c. The simulation run behaves initially (Fig. 3a) like the reference run
(Fig. 1a). However, at later times (Fig. 3b and 3c) the effect of the increased
conductance becomes evident. Because of the high conductance, field lines are
effectively tied in the ionosphere. Ionospheric, and therefore magnetospheric con-
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Figure 3. Time evolution of the magnetic field in the noon-midnight
meridional plane for the run with increased ionospheric Hall and
Pedersen conductance. The snapshots are taken at 125(3a), 150(3b),
and 180(3b) minutes, respectively.

vection cannot proceed. The magnetospheric (closed) field on the dayside is
not being replenished, leading to rapid earthward movement of the dayside
magnetopause. Similarly, closed magnetic flux that is created by nightside
reconnection piles up and pushes the neutral line tailward. Because of this flux
imbalance, the whole auroral oval shifts sunward (not shown here). There are no
signs of an instability occurring in the tail. Eventually (after a few hours), the
system will achieve a convection balance. However, many of the parameters, for
example the region 1 Birkeland currents, reach unrealistic values.

IV. DISCUSSION

We have used our global MHD model to study the effects of small scale
processes and their parameterization on the dynamics of the magnetosphere.

First, we compare the reference run with the simulation run in which
the anomalous resistivity term was switched off. These two simulations show



drastically different behaviours of the tail. By and large, the reference run, i.e.,
including a model of anomalous resistivity, shows a tail evolution that is in fairly
close agreement with what is typically observed during substorms. In particular,
the ejection of plasmoids (or flux ropes) in connection with substorms seems to
be a well established feature [20]. However, we should caution against a direct
comparison of any details in the reference run with substorm observations or with
phenomenological substorm models. Substorms appear in a great variety of sizes
and forms which seem to be very sensitive to the IMF history and solar wind
parameters (see for example [23]). In this simulation run we used solar wind
parameters that are rather unlikely to occur, in particular the IMF had no F £component. Detailed comparisons between data and the model require that the
model is run with measured solar wind data as input.

Three conclusion can be drawn from the comparison of these two simulation
runs.

First, it seems that the numerical resistivity in our model is lower than the
physical resistivity, at least in those regions of the magnetosphere and during those
times where the physical resistivity reaches its highest values. This gives us more
confidence in our simulation results, because numerical effects are apparently
becoming less significant than the physical ones.

Second, the comparison of the two simulations provides evidence that
some sort of anomalous resistivity

�
must be present for substorms to occur. Of

course, the global simulations give no clue as to what the physical nature of the
anomalous resistivity is. Although based on local theoretical studies [24-26], our
resistivity model remains mostly phenomenological until now. Measurements of
resistivity are very difficult [27], and therefore our understanding of the kinetic
processes that lead to a violation of the ideal Ohm’s Law is limited. We hope that
forthcoming multipoint space missions will yield new data that lead to a better
understanding of these kinetic processes and help us to improve our model.

Third, the comparison shows how critically the dynamics of the mag-
netosphere depends on a local, small scale process like anomalous resistivity.
Although the MHD equations were altered only in a very small region (as com-
pared to the size of the magnetosphere), this change leads to processes that affect
the magnetospheric topology in a wide region and in a very short time.

The comparison of the reference run with the run with increased ionospheric
conductance shows how tightly the magnetospheric dynamics are connected to
the ionosphere. One implication is, of course, that it is important to model
the ionosphere and its coupling with the magnetosphere in a proper fashion in
order to address the magnetospheric dynamics correctly. Fortunately, much more
observational data are avalaible for the ionosphere than for the tail. We compared�

The term ‘anomalous resistivity’ is used in a broad sense here and is
meant to include all processes that are capable of violating the ideal Ohm’s Law( �/� �-� 	,+ .



the conductances in our model with statistical observations [22,28] and find in
general a good agreement with these observations. Thus, although our ionospheric
model is rather crude and built on simple approximations and empirical models,
it seems to serve fairly well as a first order approximation.

The comparison of these two runs also shows that the evolution of reconnec-
tion processes in the tail is not only controlled by local parameters, i.e., anomalous
resistivity, but by the ionospheric boundary conditions as well. Although we
changed the boundary conditions rather drastically in the latter simulation run,
the formation of a second (near-earth) neutral line and the formation of a plas-
moid/flux rope was completely inhibited, despite the presence of anomalous
resistivity.

The three simulations runs discussed here do not allow us to assess which
of the two proceesses, i.e., anomalous resistivity or ionospheric conductance, is
more important in controlling tail dynamics. Certainly, more simulations with
varying parameters and careful comparisons with observations are necessary to
gain better insight into these processes and their intricate relation. However, it is
clear from the above results that any successful substorm model would necessarily
include both of these processes.

In conclusion, our results show that the global configuration and dynamics
of the magnetosphere depends critically on localized, small scale processes, and
that carefully choosen parameterizations of these small scale processes are an
important ingredient of any global magnetosphere model.
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