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Abstract. We use a novel coupled model of the magnetosphere-ionosphere-thermosphere
system consisting of the OpenGGCM magnetosphere model, the CTIM ionosphere-
thermosphere model, and the RCM model for the drift physics of the inner magnetosphere to
study Sub-Auroral Polarization Streams (SAPS). We use the model to simulate the March 17,
2013 “St. Patrick’s day” geomagnetic storm. It had been previously established that SAPS occur
during this storm. We demonstrate that the model can reproduce the salient features of SAPS.
In particular, the model reproduces the strong northward electric field associated with westward
flows, well equatorward of the convection cells. The flows are located just equatorward of the
lower boundary of electron precipitation and thus in a region of low ionosphere conductance.
Associated with the flows is a deepening through in electron density. The SAPS extend from
post-noon to post-midnight, and with increasing local time they extend to lower and lower
latitudes. This had been previously fond in a statistical sense, but the model finds that this
behavior is also true at given times. We thus conclude that self-consistent modeling of SAPS is
now possible, which enables us to study their properties in more detail.

1. Introduction
Sub-auroral Polarization Streams [SAPS] are a feature of the ionosphere that develops mostly
during geomagnetic active times [Foster et al., 2007].

Foster and Vo [2002] have shown that SAPS statistically occur primarily in the afternoon
sector and that they are more intense as geomagnetic activity increases. The primary
characteristics of SAPS is an intense northward electric field that is well equatorward of the
convection pattern. This electric field channel is a few degrees wide and can have peak values
around 100 mV/m. This corresponds to plasma drift velocities of ∼2000 m/s. Along with the
high speed flow channel, the mid-latitude trough in the electron density deepens. Coincident
measurements of electric field, field-aligned currents (FACs), and particle precipitation show
that the SAPS electric field is located equatorward of plasma sheet electron precipitation
overlapping with region-2 (R2) FAC. Because of the lack of sufficient precipitation, the
ionosphere conductance is low. This leads to the simple conjecture that the strong SAPS electric
field occurs because the magnetosphere imposes the current, which in a simple electrical circuit
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picture requires an increased voltage, i.e., stronger electric field, to support that current. At
the same time, increased recombination decreases the ionosphere electron content, which further
decreases ionosphere conductance [Rodger , 2008].

An increase of the relative flow velocity between the ions and the neutrals from 1000 km/s to
2000 km/s increases the recombination rate by about an order of magnitude [Schunk et al., 1976].
Thus, there is possibly a positive feedback loop that may enhance the SAPS effect. However, this
picture depends on assumptions, for example, that the magnetosphere is a current generator, and
that the electron depletion occurs at altitudes where is has a significant effect on conductance.

Even though a rather straight-forward theory may suffice to explain SAPS, at least in a
climatological sense, it is quite difficult to model them self-consistently, in particular during
geomagnetically active times. Although SAPS are primarily a ionosphere phenomenon, they are
driven by the magnetosphere that produces the FAC and electron precipitation, and they require
fully three-dimensional modeling of the ionosphere-thermosphere (IT) system. Furthermore, R2
currents are believed to be driven by pressure gradients in the inner magnetosphere, which
require the inclusion of the proper drift physics that produces the ring current. In the past
each of these systems has been modeled separately, for example CTIM exists as a stand-alone
model [Fuller-Rowell et al., 1996], MHD based magnetosphere models exist for a few decades now
[Raeder , 2003; Lyon et al., 2004; Toth et al., 2005]. Likewise, models of the inner magnetosphere
alone have been used for a long time [Toffoletto et al., 2003; Fok et al., 2001; Jordanova, 2003;
Kozyra et al., 1998]. Pairwise coupled models are now common, such as OpenGGCM-CTIM
[Raeder et al., 2001a], or coupled models of the inner and outer magnetosphere [Toffoletto
et al., 2004; Hu et al., 2010], as well as models of the coupled inner magnetosphere-IT system
[Maruyama et al., 2007]. However, coupled simulations with full feedbacks between all of the
outer magnetosphere, inner magnetosphere, and the IT systems are relatively new and have not
yet been extensively tested.

Here, we present first results from one such model, i.e., the coupled OpenGGCM
(magnetosphere), CTIM (IT system), and Rice Convection Model (RCM, inner magnetosphere).
As one of the first significant results of that model we show that it can produce the salient features
of SAPS.

2. The OpenGGCM-CTIM-RCM Model
The OpenGGCM is a global coupled model of Earth’s magnetosphere, ionosphere, and
thermosphere. The magnetosphere part solves the MHD equations as an initial-boundary-value
problem. The MHD equations are only solved to within ∼3 RE of Earth. The region within
3 RE is treated as a magnetosphere-ionosphere (MI) coupling region where physical processes
that couple the magnetosphere to the ionosphere-thermosphere system are parameterized using
simple models and relationships. Important for this investigation, we use MHD plasma
parameters at the inner boundary to compute electron precipitation parameters, such as the
electron energy flux and mean energy associated with diffuse and the discrete aurora. Details
of these calculations can be found in Raeder et al. [1998, 2001b]; Raeder [2003]; Raeder et al.
[2008b].

The ionosphere-thermosphere system is modeled using the NOAA CTIM (Coupled
Thermosphere Ionosphere Model) [Fuller-Rowell et al., 1996]. The original coupling between
the OpenGGCM and CTIM is described in Raeder et al. [2001a].

The inner magnetosphere is modeled using the Rice Convection Model [Toffoletto et al.,
1996]. Some early results of the coupling between OpenGGCM and RCM were presented by
Hu et al. [2010]. The coupling of these models has since been improved. Since the domains of
the OpenGGCM and the RCM overlap, there exist two computed states of the plasma in that
region. Because the RCM description is considered to be more adequate for the physics in this
region, i.e., based on the energy dependent drifts, the RCM plasma density and pressure is used
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Figure 1. Block diagram of the OpenGGCM with its models and with data/control flow. Blue lines denote
model input and output. Red lines denote data flow with strong coupling. Green lines denote data flow with
weak or slow coupling. Orange lines denote control flow. B, N, and T are the magnetospheric magnetic field,
plasma density, and temperature, respectively. The field aligned current is j‖, Φ is the ionosphere potential,
FE and E0 the energy flux and mean energy of precipitating electrons, ΣH and ΣP the ionosphere Hall and
Pederesen conductances, and ∂B is the ground magnetic perturbation.

to override the MHD values. However, a simple overwrite feature will not work properly and is
thus replaced by a blending algorithm that on a reasonable time scale guarantees that the MHD
quantities follow the RCM quantities closely. In the region of overlap, the RCM also provides the
electron precipitation for the IT system, which is otherwise, i.e., at high latitudes, provided by
the MHD solution. In return, the MHD part of the code provides plasma boundary conditions
for the RCM, and the electric potential that the RCM uses to calculate the E×B drift. The
models are thus tightly coupled, and it can be demonstrated that the coupled model produces
much more realistic R2 currents and inner magnetosphere shielding. OpenGGCM has in the
past used for numerous studies, such as magnetopause reconnection [Berchem et al., 1995a, b;
Raeder , 2006], the plasma depletion layer [Wang et al., 2003, 2004], plasma entry due to double
lobe reconnection [Li et al., 2005, 2008, 2009], ballooning modes [Zhu et al., 2009; Raeder et al.,
2010, 2012], interplanetary shock impacts [Oliveira and Raeder , 2014; Oliveira et al., 2016], and
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Figure 2. Solar wind, IMF, and geomagnetic conditions on March 17, 2013. The figure shows, from top
to bottom: the geomagnetic indices AE, AU, AL, and SYM-H, derived from SuperMAG data; the IMF Bz

component, and the field magnitude; the solar wind dynamic pressure; and the solar wind velocity. Note that
SYM-H has been multiplied by 10 to fit on the same scale.

substorms [Raeder , 1995; Raeder et al., 2001b; Ge et al., 2011]. A more detailed description
of the code and the methods used can be found in Raeder [2003]; Raeder et al. [2008a]. The
OpenGGCM is available as a community model at the Community Coordinated Modeling Center
(CCMC, ccmc.gsfc.nasa.gov), where it also has undergone a number of metrics evaluation
studies [Pulkkinen et al., 2010, 2011, 2013; Rastätter et al., 2013]. Here, we demonstrate that
the coupled model also produces SAPS.

3. SAPS event
The March 17, 2013 (St. Patrick’s Day) storm event was chosen by the GEM and CEDAR
communities for coordinated studies. It has been shown that during this event intense SAPS
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occurred [Foster et al., 2014], which also led to the large-scale circulation of plasma to high
latitudes and the convection throat. This leads to the formation of a Storm-Enhanced Density
(SED) feature, and the so-called Tongue Of Ionization (TOI). However, in this paper, we will
not address these phenomena and focus on SAPS.

The March 17 storm was caused by an Interplanetary Coronal Mass Ejection (ICME) that
impinged on the magnetosphere. Figure 2 shows solar wind and Interplanetary Magnetic Field
(IMF) data for that event. The storm commenced around 0600 UT on March 17, with a sudden
increase in solar wind speed, dynamic pressure, and IMF magnitude. Initially, the IMF Bz

fluctuated between southern and northern directions, until it turned mostly southward around
0900 UT. It stayed mostly southward until ∼2000 UT. In the later phase of the storm Bz slowly
and smoothly turned northward, indicating that the field represented an ICME flux rope. The
SYM-H index fell gradually from the commencement of the storm at ∼0600 UT to -100 nT at
0900 UT, and then stayed essentially constant until the beginning of the recovery at ∼2100 UT.
The storm is thus quite typical, and of weak to moderate strength. AE values during the storm
are typically around 1000 nT, except for a burst of activity starting at ∼1600 UT, where AE
reaches values of up to 2000 nT

4. SAPS development
This storm was previously modeled using the Space Weather Modeling Framework [Yu et al.,
2015]. Their model also includes the outer magnetosphere, inner magnetosphere, and ionosphere,
but lacks a dynamic and self-consistent ionosphere-thermosphere model. It uses an empirical
model for ionosphere conductance, which may lead to missing the critical relation between R2
currents and conductance. Furthermore, there is no feedback from the inner magnetosphere
model to the MHD solution. That model thus produces at best hints of SAPS with drift speeds
of a few 100 m/s, whereas the observations show speeds of the order of 2000 km/s. (see Figure
8 in Yu et al. [2015].)

The OpenGGCM results are presented in Figures 3-5. Each figure shows a polar view of
the northern hemisphere. There are four panels in each figure. Panel (A) shows the northward
component of the electric field, i.e., Eϑ in polar solar magnetic (SM) coordinates. Comparison to
drift speeds is facilitated by noting that 50 mV/m correspond to ∼1000 m/s drift speed. Panel
(B) shows the diffuse electron precipitation energy flux. This flux is computed from the thermal
energy flow from magnetospheric electrons, assuming a full loss cone. It essentially represents
the auroral oval. Panel (C) shows the vertical Total Electron Content (TEC), as computed
in CTIM. Panel (D) shows the ionosphere Pedersen conductance, computed self-consistently in
CTIM from electron density, neutral densities, and collision frequencies. Obviously, the nightside
conductance is closely related to precipitation.

Figure 3 shows the ionosphere state at 0736 UT, shortly after storm commencement. At this
time, the dawn electric field has already intensified. The corresponding flow channel stretches
from noon MLT to past midnight. The strong electric field is clearly separated, and equatorward
of, the precipitation shown in panel (B). However, part of the channel is still on open field lines
(the open-closed boundary is shown by the red line), thus, the afternoon portion of the flow
should probably not be labeled SAPS. However, in the evening and night side, the flows are
clearly separated from the polar cap. Furthermore, past 2000 MLT the flows split into two
channels, a feature that is often observed with SAPS. Such separation is visible in the data as
shown in the Yu paper (see Figure 8 in Yu et al. [2015].) Panel (C) shows that at this time no
trough has formed yet, except maybe for a hint of depletion around dusk. It appears that at
this time TEC in that region is still dominated by auroral electron precipitation.

Figure 4 shows, in the same format as Figure 3, the northern polar ionosphere at 1024 UT.
By this time the SAPS is fully developed. Specifically, the flow channel now extends from ∼1400
UT to past midnight and is well separated from the polar cap and from the precipitation region.

15th AIAC: “The Science of Ed Stone: Celebrating his 80th Birthday” IOP Publishing
Journal of Physics: Conference Series 767 (2016) 012021 doi:10.1088/1742-6596/767/1/012021

5



12

24

18

6

MIN:-94
Co-lat: 0:40

MAX: 162.990

STORM-2013-03-17-j02
17-MAR-2013
0736 UT
027360

E_the[mV/m]

-80

-60

-40

-20

0

20

40

60

80

(A)

12

24

18

6

MIN:0.0000
Co-lat: 0:40

MAX:69

STORM-2013-03-17-j02
17-MAR-2013
0736 UT
027360

diff-e-prec-Eflux[mW/m**2]

0.1

1

10

100

0.3

3

30

(B)

12

24

18

6

MIN:34
Co-lat: 0:40

MAX: 234.563

STORM-2013-03-17-j02
17-MAR-2013
0736 UT
027360

TEC

100

30

(C)

12

24

18

6

MIN: 3.0
Co-lat: 0:40

MAX:78

STORM-2013-03-17-j02
17-MAR-2013
0736 UT
027360

Sigma-P[S]

0.1

1

10

100

0.3

3

30

(D)

Figure 3. State of the ionosphere at 0736 UT. Polar views of (A) northward component of the northward
component (Bϑ in polar SM coordinates) ionosphere electric field, (B) diffuse electron precipitation, (C) the
vertical Total Electron Content (TEC), and (D) the Pederen conductance. Each figure covers 50◦ latitude to
the pole, and circles are drawn every 10 degrees.

Nearly coincident, a trough has developed and deepened in TEC. The trough is rotated some
2-3 hours local time past the flows, because the flow channel is stationary in the SM frame,
whereas the electrons tend to co-rotate with the Earth, i.e., they are more stationary in the
geographic frame. The trough thus extends substantially past midnight. A trough-like feature
also begins to show in the conductance. It is also noteworthy that the latitude of the flow channel
has a MLT dependence, such that the channel is at lower latitude as MLT increases. This has
previously been found in statistical studies [Foster and Vo, 2002]. The simulation shows that
such dependence can also exist at any given time.

Figure 5 shows the ionosphere at 1528 UT. This is still during the main phase of the storm;
however, as Figure 2 shows, just after a brief phase of northward IMF. The SAPS now show some
signs of recovery. The electric field is weaker, and the trough starts to disappear on the dayside,
but still keeps co-rotating. Also, the flow channel progresses to lower latitudes in the night side.
The SYM-H index (essentially the same as Dst) does not correlate well with SAPS development,
since it reacts slowly to IMF changes. Likewise, the A-indices only seem to correlate weakly with
SAPS as they primarily describe the high-latitude disturbances. Apparently, the SAPS electric
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Figure 4. State of the ionosphere at 1024 UT, in the same format as Figure 3.

field reacts much more quickly to IMF changes, although the driver, i.e., the inner magnetosphere
pressure distribution that drives the R2 currents is related to SYM-H. This warrants further
investigation.

5. Summary and conclusions
We have presented a new model, consisting of the OpenGGCM for the outer magnetosphere,
the RCM for the inner magnetosphere, and CTIM for the ionosphere-thermosphere system. We
used the model to simulate the March 17, 2013 geomagnetic storm, which had previously been
investigated and shown to develop significant SAPS.

We show that the model reproduces the salient features of SAPS, namely the strong northward
fields and associated ion drifts, and the coincident trough in electron density. These features
follow largely the characteristics established by statistical studies, i.e., the magnitude of the
flows, and their latitude dependence on MLT. Also, as established in previous work, the model
shows that the SAPS fields are well separated from the convection pattern itself, and that they
lie equatorward of regions of electron precipitation.

Although fairly comprehensive data are available for this event, we forgo a detailed
comparison, which is beyond the scope of this paper. We note, however, that a simple eye-
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Figure 5. State of the ionosphere at 1538 UT, in the same format as Figure 3.

balling comparison with the DMSP passes presented in the Yu et al. [2015] paper reveals that
the SAPS electric field and flow speed values in our model, which reach some 100 mV/m and
2000 km/s, respectively, compare well with the data.

We contrast this with the results of the Yu paper, which shows much weaker flows. The
reason for this may be the fact that their model does not include a self-consistent ionosphere-
thermosphere model to produce the ionosphere conductance, whereas ours does. Indeed, we
observe in our results the development of a deep trough in the electron density, which lowers the
conductance. Thus, our results indicate that the positive feedback between the flows, electron
density, and conductance may be critical for development of SAPS, as indicated in the Rodger
[2008] review, for example. We will investigate this in forthcoming studies by comparing with
model runs that quench the feedback, and by comparing with data.

Acknowledgments
JR would like to thank J. Foster, P. Erickson, and P. Anderson for enlightening discussions.
For the ground magnetometer data we gratefully acknowledge the SuperMAG contributors
and PI Jesper Gjerloev, funded under NSF ATM-0646323, NSF AGS-1003580, and NASA
NNX08AM32G S03. The work at UNH was funded through grant AGS-1143895 from the

15th AIAC: “The Science of Ed Stone: Celebrating his 80th Birthday” IOP Publishing
Journal of Physics: Conference Series 767 (2016) 012021 doi:10.1088/1742-6596/767/1/012021

8



National Science Foundation, and NASA/LWS grant NNX13AK31G. Computations were
performed on Trillian, a Cray XE6m-200 supercomputer at UNH supported by the NSF MRI
program under grant PHY-1229408.

References
Berchem, J., J. Raeder, and M. Ashour-Abdalla, Reconnection at the magnetospheric boundary: Results

from global MHD simulations, in Physics of the Magnetopause, edited by B. U. Sonnerup and P. Song,
vol. 90 of AGU Geophysical Monograph, p. 205, 1995a.

Berchem, J., J. Raeder, and M. Ashour-Abdalla, Magnetic flux ropes at the high-latitude magnetopause,
Geophys. Res. Lett., 22 , 1189, 1995b.

Fok, M.-C., R. A. Wolf, R. W. Spiro, and T. E. Moore, Comprehensive computational model of the
Earth’s ring current, J. Geophys. Res., 106 , 8417, 2001.

Foster, J. C., and H. B. Vo, Average characteristics and activity dependence of the sub auroral polarization
stream, J. Geophys. Res., 107 , doi:10.1029/2002JA009,409, 2002.

Foster, J. C., W. Rideout, B. Sandel, W. T. Forrester, and F. J. Rich, On the relationship of SAPS to
storm-enhanced densitys, J. Atm. Sol. Terr. Phys., 69 , 303, 2007.

Foster, J. C., P. J. Erickson, A. J. Coster, S. Thaller, J. Tao, J. R. Wygant, and J. W. Bonnell, Storm
time observations of plasmasphere erosion flux in the magnetosphere and ionosphere, Geophys. Res.
Lett., 41 , 762–768, 2014.

Fuller-Rowell, T. J., D. Rees, S. Quegan, R. J. Moffett, M. V. Codrescu, and G. H. Millward, A coupled
thermosphere-ionosphere model (CTIM), in STEP Report , edited by R. W. Schunk, p. 217, Scientific
Committee on Solar Terrestrial Physics (SCOSTEP), NOAA/NGDC, Boulder, Colorado, 1996.

Ge, Y. S., J. Raeder, V. Angelopoulos, M. L. Gilson, and A. Runov, Interaction of dipolarization fronts
within multiple bursty bulk flows in global MHD simulations of a substorm on 27 February 2009, J.
Geophys. Res., 116 , A00I23, 2011.

Hu, B., F. Toffoletto, S. Sazykin, J. Raeder, D. Larson, and A. Vapirev, RCM simulation
of the March 23rd 2007 substorm event using the OpenGGCM, J. Geophys. Res., 115 ,
A12,205 doi:10.1029/2010JA015,360, 2010.

Jordanova, V. K., New insights of geomagnetic storms from model simulations using multi-spacecraft
data, Space Science Reviews, 107 , 157, 2003.

Kozyra, J. U., V. K. Jordanova, J. E. Borovsky, M. F. Thomsen, D. J. Knipp, D. S. Evans, D. J.
McComas, and T. E. Cayton, Effects of a high-density plasma sheet on ring current development
during the november 2-6, 1993, magnetic storm, Journal of Geophysical Research, 103 , 26,285–305,
1998.

Li, W., J. Raeder, J. Dorelli, M. Øieroset, and T. D. Phan, Plasma sheet formation during long period
of northward IMF, Geophys. Res. Lett., 32 , L12S08, doi: 10.1029/2004GL021,524, 2005.

Li, W., J. Raeder, J. C. Dorelli, M. Thomsen, and B. Lavraud, Solar wind entry into the magnetosphere
under northward IMF conditions, J. Geophys. Res., 113 , A04,204, 2008.

Li, W., J. Raeder, M. Øieroset, and T. D. Phan, Cold dense magnetopause boundary layer
under northward IMF: Results from THEMIS and MHD simulations, J. Geophys. Res., 114 ,
A00C15, doi:10.1029/2008JA013,497, 2009.

Lyon, J. G., J. A. Fedder, and C. M. Mobarry, The Lyon-Fedder-Mobarry (LFM) global MHD
magnetospheric simulation code, J. Atm. Sol. Terr. Phys., 66 , 1333, 2004.

Maruyama, N., et al., Modeling storm-time electrodynamics of the low-latitude ionosphere–thermosphere
system: Can long lasting disturbance electric fields be accounted for?, J. Atm. Sol. Terr. Phys., 69 ,
1182–1199, 2007.

Oliveira, D. M., and J. Raeder, Impact angle control of interplanetary shock geoeffectiveness, J. Geophys.
Res., 119 , 8188, 2014.

Oliveira, D. M., J. Raeder, B. T. Tsurutani, and J. W. Gjerloev, Effects of interplanetary shock
inclinations on nightside auroral power, Braz. Jour. Phys., 46 , 97–104, 2016.

Pulkkinen, A., L. Rastätter, K. Kuznetsova, M. Hesse, A. Ridley, J. Raeder, H. J. Singer, and A. Chulaki,
Systematic evaluation of ground and geostationary magnetic field predictions generated by global
magnetohydrodynamic models, J. Geophys. Res., 115 , A03,206, 2010.

15th AIAC: “The Science of Ed Stone: Celebrating his 80th Birthday” IOP Publishing
Journal of Physics: Conference Series 767 (2016) 012021 doi:10.1088/1742-6596/767/1/012021

9



Pulkkinen, A., et al., Geospace environment modeling 2008-2009 challenge: Ground magnetic field
perturbations, Space Weather , 9 , S02,004, 2011.

Pulkkinen, A., et al., Community-wide validation of geospace model ground magnetic field perturbation
predictions to support model transition to operations, Space Weather , 11 , 369 doi:10.1002/swe.20,056,
2013.

Raeder, J., Global MHD simulations of the dynamics of the magnetosphere: Weak and strong solar wind
forcing, in Proceedings of the Second International Conference on Substorms, edited by J. R. Kan, J. D.
Craven, and S.-I. Akasofu, p. 561, Geophysical Institute, Univ. of Alaska Fairbanks, 1995.

Raeder, J., Global Magnetohydrodynamics – A Tutorial, in Space Plasma Simulation, edited by
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