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Current sheet configurations in natural and laboratory plasmas are often accompanied by a finite normal

magnetic component that is known to stabilize the two-dimensional resistive tearing instability in the high

Lundquist number regime. Recent magnetohydrodynamic simulations indicate that the nonlinear develop-

ment of ballooning instability is able to induce the formation of X lines and plasmoids in a generalized

Harris sheet with a finite normal magnetic component in the high Lundquist number regime where the

linear two-dimensional resistive tearing mode is stable.
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Plasmoid often refers to a finite two-dimensional (2D)
region of closed magnetic flux bounded by a separatrix
with a single X point [1,2]. An isolated magnetic island in
the downstream region of a Sweet-Parker current sheet is
also generally called a plasmoid (e.g., [2]). Plasmoids are
often found in natural and laboratory plasmas in associa-
tion with various eruptive processes, such as those
observed in solar corona, magnetosphere, and magnetic
fusion experiments. Plasmoid formation has been believed
to be the origin of substorm onset [3], and recently it
has received renewed interest due to its potential roles
in the universal process of fast reconnection [4].
Characteristically, a plasmoid could spontaneously form
in the current sheet region with a finite magnetic field
component Bn normal to the neutral sheet plane.
However, it has not always been clear how a plasmoid
would spontaneously form without an external driver in
such a current sheet configuration where no X line
preexists.

The formation of plasmoids has beenmostly investigated
for the Earth’s magnetotail configuration in the context of
the substorm onset problem [1–3,5–8]. In those studies the
weakly 2D current sheet with finite Bn is used to model
the initial static equilibrium of near-Earth magnetotail
plasma. The 2D configuration becomes unstable to two-
dimensional tearing type of perturbations when the plasma
resistivity is sufficiently large. In its nonlinear stage, the
unstable 2D resistive mode alone, which has been referred
to by many as the ‘‘2D tearing instability’’ (e.g., [9–17])
and recently as the ‘‘axial tail instability’’ [18,19] in the
context of magnetotail plasma, can induce the formation of
the X line and plasmoid. In reality, however, magnetotail
current sheets are often in regimes where the effective
plasma resistivity might be too weak for the onset of 2D
resistive tearing instability due to the strong stabilization
from Bn (e.g., [15]). It has remained an interesting question
how plasmoids would spontaneously form in the weakly
resistive current sheets where no X line preexists and the
finite Bn is sufficient to stabilize 2D resistive modes.

Our recent three-dimensional (3D) magnetohydrody-
namic (MHD) simulations of the plasmoid formation pro-
cess in the current sheet with finite Bn and weak resistivity
have shown a significant difference from 2D simulations
due to the 3D effects. In particular, the inclusion of the
spatial variation in the equilibrium current direction (which
is the y direction in the Cartesian coordinates defined
later) allows the presence of ballooning instability (e.g.,
[20–22]), which has demonstrated its critical roles in the
plasmoid formation process in the higher Lundquist num-
ber regimes where the linear 2D resistive modes of the
current sheet are stable. In those regimes the thin current
sheet with finite Bn is susceptible to finite-ky ballooning

instability whose growth time scale is sub-Alfvénic. Here
ky is the wave number in the y direction. The nonlinear

ballooning growth tends to stretch the current sheet and
reduce Bn. As a consequence, magnetic X points appear
and plasmoids start to form. All ky components, including

the ky ¼ 0 component, contribute to the nonlinear balloon-

ing growth that leads to the formation of plasmoids. These
simulation results suggest a new mechanism for plasmoid
formation in the current sheet with finite Bn in the high
Lundquist number regimes. We briefly report and discuss
these findings in this Letter.
We consider a generalized Harris sheet configuration

in Cartesian coordinates (x, y, z) where B0ðx; zÞ ¼ ey �
r�ðx; zÞ, �ðx; zÞ ¼ �� lnð cosh½FðxÞðz=�Þ�=FðxÞÞ, and
lnFðxÞ ¼ �R

B0zðx; 0Þdx=�. Here � is the current sheet

width, ey is the unit vector in the y direction, and all other

symbols are conventional. The profile of Bn ¼ B0zðx; 0Þ
has a minimum region along the x axis (Fig. 1). Such a
configuration was previously used to model the near-Earth
magnetotail [19,23]. Unlike the conventional Harris sheet,
where Bn and the magnetic curvature are zero everywhere,
the generalized Harris sheet equilibrium shown in Fig. 1
has regions of unfavorable magnetic curvature mostly
around z ¼ 0 due to the presence of finite Bn. Hence the
generalized Harris sheet is susceptible to ballooning insta-
bility. Global simulations have identified signatures of both
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ballooning instability and axial tail instability near the
minimum Bn region along the x axis [18,24], and recent
MHD analysis indicates that such a configuration is indeed
unstable to the axial tail instability but only in the low
Lundquist number regime (S & 103) [19].

To further investigate the stability of the configuration in
a higher Lundquist number regime, a full set of resistive
MHD equations are solved in the 3D domain as an initial-
boundary value problem:

@�

@t
þ r � ð�uÞ ¼ 0; (1)

�

�
@u

@t
þ u � ru

�
¼ J� B� rpþ�r � ð�wÞ; (2)

@p

@t
þ u � rp ¼ ��pr � u; (3)

@B

@t
¼ �r� E; (4)

E ¼ �u� Bþ �J; (5)

�0J ¼ r� B; (6)

where � is the mass density, u is the plasma flow velocity,
p is the pressure, E is the electric field, B is the magnetic
field, J is the current density, the adiabatic index � ¼ 5=3,
and w ¼ ruþ ðruÞT � ð2=3ÞIr � u. In a weakly colli-
sional or collisionless plasma, both resistivity � and vis-
cosity � are small in the absence of anomalous sources.
The above set of equations have been implemented in both
the linearized and the fully nonlinear version in the
NIMROD code [25] used in our computation. A solid, no-

slip wall boundary condition has been imposed on the sides
of the computation domain in both the x and z directions,
so that any potential influence from an external inward flow
can be excluded. The boundary condition in the y direction
is periodic. The spatial and temporal variables are normal-
ized with the equilibrium scale length (e.g., Earth radius)
and the Alfvénic time �A, respectively.

Linear calculation indicates that the current sheet con-
figuration shown in Fig. 1 is unstable to the 2D resistive
tearing or axial tail instability (ky ¼ 0) in the lower

Lundquist number regime (S & 103). The inclusion of
spatial variation in the y direction significantly enhances
the linear growth, particularly in the higher S regime
when the 2D resistive tearing or axial tail mode is stable
(Fig. 2). The enhanced linear growth of the finite-ky insta-

bility remains effective and becomes more relevant in the
more realistic collisionality regime (S * 106), thus making
the instability a viable mechanism for explaining the faster
sub-Alfvénic time scale of the current sheet evolution in
situations where the sources for large anomalous resistivity
are not available.
We now consider the nonlinear plasmoid formation

process in the same current sheet configuration in a less
resistive regime S ¼ 104, where the 2D resistive tearing
mode is linearly stable and a plasmoid cannot spontane-
ously form internally from a purely 2D process (ky ¼ 0).

However, the inclusion of the 3D effects leads to an
entirely new scenario where the plasmoid formation can
be nonlinearly driven by a finite-ky ballooning instability.

To demonstrate such a scenario, we report results from a
representative numerical case where the simulation is
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FIG. 2 (color online). Linear growth rate as a function of the
wavelength in the y direction for different Lundquist number (S)
regimes. The magnetic Prandtl number Pm � �=� ¼ 1 for all
cases.

FIG. 1. B0zðx; 0Þ profile (left) and magnetic field lines (right)
for the generalized Harris sheet equilibrium considered in this
Letter.
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FIG. 3 (color online). Kinetic energy growth of the ky ¼ 0 and
ky ¼ 0:2� components of the nonlinear perturbation.
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initialized with a small magnetic perturbation whose mag-
nitude is about one-tenth of the minimum Bn. The initial
perturbation is monochromatic in the y direction with a
wavelength of 10. A finite element mesh of 64� 64 with a
polynomial degree of 5 in each direction is used for the x-z
domain. In the y direction, 32 Fourier collocation points
are used to resolve Fourier components in the range of
0 � kyLy=2� � 10, where Ly ¼ 100 is the domain size in

y. The perturbation quickly settles into a linearly growing
ballooning instability first and subsequently drives the
growth of the ky ¼ 0 component through nonlinear cou-

pling (Fig. 3). The entire nonlinear evolution is dominated
by the high ky (kyLy=2� ¼ 10) component. A natural

consequence of the nonlinear ballooning drive is the
formation of plasmoids within the x-z plane.

To illustrate the plasmoid formation process, we track
the evolutions of the pressure contour in the z ¼ 0 plane
and the magnetic field lines crossing a set of fixed points
along an x axis (y ¼ �90, z ¼ 0) (Fig. 4). The first stage of
nonlinear evolution, as represented by the plot at t ¼ 180
(the upper left panel in Fig. 4), is dominated by the growing
ballooning finger structures in the z ¼ 0 plane extending in
the x direction. The magnetic field lines are mostly frozen-
in to the plasma and they move along with the extending
fingers, which results in a stretching and thinning of the
current sheet. The reduction of the normal component Bn

in the z ¼ 0 plane appears to be the most in extent near the
moving fronts of the extending fingers, as evidenced by the
formation of a plasmoid in one of those locations around
x ¼ 13:5 at t ¼ 190 (the upper right panel in Fig. 4). The

FIG. 4 (color online). Total pressure contours in the z ¼ 0 plane and magnetic field lines crossing the x axis at y ¼ �90, z ¼ 0 at
selected times (t ¼ 180, 190, 200, 210, 220, 260).
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plasmoid continues to grow in size and move in the positive
x direction, even when the finger length in pressure contour
has started to decrease as the amplitude of the ballooning
instability has reached saturation since the time t ’ 190.

In addition to the formation of a plasmoid in close
association with the extruding fronts of nonlinear balloon-
ing fingers, other plasmoids have also formed in the wakes
of those ballooning finger fronts (Fig. 4). Almost in parallel
to the course of the plasmoid formation described in the
previous paragraph, a second plasmoid starts to form since
the beginning of the nonlinear ballooning saturation phase
around t ¼ 190 and becomes visible by t ¼ 200 to t ¼ 210
on those magnetic field lines crossing the z ¼ 0 plane in the
region around x ’ 9:5 (the twomiddle row panels in Fig. 4).
This second plasmoid, however, appears to be rather tran-
sient. When t ¼ 220, the plasmoid located near x ’ 9:5
disappears along with a dipolarization of the magnetic field
in that region (the lower left panel in Fig. 4). From that time,
the field lines crossing the z ¼ 0 plane in the x ’ 11 region
have started to stretch in the positive x direction, which
eventually leads to the formation of a third plasmoid in that
region by the time t ¼ 260 (the lower right panel in Fig. 4).

Unlike in 2D simulations, the above 3D plasmoid for-
mation process is different for different locations along the
y direction. For example, for a different set of field lines
crossing the x axis at y ¼ �95, z ¼ 0, there is no plasmoid
structure at t ¼ 260 (the right panel in Fig. 5). Similarly, at
an earlier time t ¼ 200, the plasmoid associated with the
ballooning finger front at x ¼ 14 on the y ¼ �90, z ¼ 0
axis (as shown in the middle left panel in Fig. 4) does not
exist on these field lines crossing the y ¼ �95, z ¼ 0 axis;
only near x ¼ 9:5 a plasmoid structure remains with a
slightly different shape (the left panel in Fig. 5). The
variation of the plasmoid presence and appearance in the
y direction strongly indicates that the plasmoid formation
reported here is an intrinsically 3D process that is qualita-
tively different from the 2D process.

In summary, we demonstrated in simulations that non-
linear ballooning instability can effectively enable the

formation of plasmoids in a current sheet with a finite
normal component in the higher Lundquist number regime
where the 2D resistive tearing or axial tail mode is stabi-
lized by the finite Bn. Our results are not limited to the
specific current sheet model shown in Fig. 1 or the particu-
lar numerical settings. The scenario obtained here persists
in our simulations based on the more realistic current sheet
profiles that are continuous at any differential order and in
simulations with higher resolutions as well as nonmono-
chromatic initial perturbations. We plan to report those
additional simulation results elsewhere. Recent 2D and
3D kinetic simulations have also found that plasmoids
can form in magnetotail configurations and regimes
where the 2D resistive tearing mode itself would be stable
[26–28]. The quantification of the full range of configura-
tion and parameter space for the reported plasmoid for-
mation mechanism and the comparison between the MHD
and kinetic simulation results will be subjects of future
studies.
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