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[1] Previous global magnetohydrodynamic (MHD) simulations of substorm events have
identified the dynamic presence of an axial tail instability that is uniform in the dawn-dusk
direction in the near-Earth plasma sheet. The axial tail instability is found to be a major
cause of the initial growing MHD force imbalance on closed field lines prior to the
subsequent magnetic reconnection and substorm expansion onset processes. In this work,
energy principle analysis indicates that a two-dimensional thin current sheet configuration
in the magnetotail is typically stable to the axial mode within the framework of ideal MHD
model. However, linear resistive MHD calculations find axial tail instabilities on closed
field lines in the generalized Harris sheet configurations. The properties of these
instabilities are similar to the axial tail modes observed in the global MHD simulations.
The axial tail mode is unstable in regimes of low Lundquist number and regions with small
normal component of magnetic field. Such resistive axial tail instability would by many
researchers be considered as tearing instability in a two-dimensional tail configuration.
Unlike the conventional tearing mode of Harris sheet, the linear axial tail instability does
not involve any reconnection process. Instead, the nature of the mode is dominantly a
slippage process among neighboring flux tubes as facilitated by resistive dissipation.
A natural consequence of the axial tail instability is shown to be the formation of
bubble-blob pairs in the pressure and entropy profiles in the near-Earth plasma sheet.
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1. Introduction

[2] Recent global MHD simulations indicate that sub-
storm onsets are often preceded by a growing MHD force
imbalance in a near-tail region where the northward com-
ponent of magnetic field normal to the current sheet is finite
[Siscoe et al., 2009]. The X-line structure in the magnetic
field, a characteristic feature of two-dimensional (2D) mag-
netic reconnection, does not form initially. However, X-line
formation does occur just before the expansion onset. Further
examination of the global simulations using the OpenGGCM
(Open Geospace General Circulation Model) code shows the
growth of an MHD mode with ky = 0 on closed field lines in
the near-Earth tail prior to reconnection events that lead to
onset [Raeder et al., 2010]. Here the coordinate system is
chosen so that the x axis is in Sun-Earth (tailward) direction,
the y axis in dusk-dawn direction, and the z axis in south-
north direction. ky is the azimuthal wavenumber in the

y direction. This mode is uniform in the dusk-dawn direction
and is therefore referred to as an axial tail mode or insta-
bility. The axial tail mode is ideal-like in the sense that the
field line topology is intact in contrast to instabilities
involving 2D reconnection. However, this instability shares
some similarities with the resistive tearing mode in terms of
mode growth rate and structure. The nonlinear development
of the axial mode is found to initiate ballooning instability
by setting up a favorable plasma sheet configuration. This
occurs before the formation of an X-line and the onset of
reconnection [Zhu et al., 2009]. Recently, it was found in
RCM (Rice Convection Model) and OpenGGCM simula-
tions that the formation of an entropy bubble-blob pair in
the near-Earth magnetotail can accelerate the thinning of the
current sheet and provide a feedback mechanism for the
formation of the near-Earth neutral line and the onset of
reconnection [Yang et al., 2011; Hu et al., 2011]. The
dynamic development of the bubble-blob pair is closely
related to the growth of the axial mode in OpenGGCM
simulations.
[3] A number of questions arise about the nature of the

axial mode identified in the global MHD simulations. Does
the axial mode develop from a linear eigenmode of an
equilibrium configuration or merely a convection process
driven by the electric field present at the magnetopause? Is
the axial mode an ideal or resistive MHD process? Is the
MHD process pressure driven or tearing? Is the formation
of the bubble-blob pair an integral aspect of the axial mode?
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To address these questions, we have developed an ideal
MHD energy principle analysis and a resistive MHD cal-
culation of the stability of an idealized 2D current sheet
configurations that is meant to model the near-Earth mag-
netotail configuration associated with the axial mode in
OpenGGCM simulations. We are particularly interested in
understanding the nature of the initial growing MHD force
imbalance that itself clearly does not involve reconnection
but appears to trigger the subsequent reconnection and onset
of substorm expansion in global MHD simulations [Siscoe et
al., 2009; Raeder et al., 2010]. This study is intended to
provide an interpretation of the recent group of published
work on the axial tail instability and the bubble-blob pair
formation within the framework of the MHD model [Siscoe
et al., 2009; Raeder et al., 2010; Hu et al., 2011]. Whereas
MHD model cannot account for the kinetic mechanisms in
the reconnection process, the MHD approach to magneto-
spheric plasma modeling has been able to account for the
major macro spatial and temporal scales associated with
substorm onset process [e.g., Raeder et al., 2008]. It is a first
step towards a full understanding of substorm observations.
[4] Our MHD energy principle analysis indicates that

the axial mode (ky = 0) in 2D tail configuration is stable at
lowest order in Bz/Bx with the ideal MHD constraint (i.e., the
“frozen-in-flux” condition). Here Bx and Bz are components
of tail magnetic field in x and z directions, respectively.
Resistive MHD calculations using the NIMROD (Non-Ideal
Magnetohydrodynamics with Rotation - Open Discussion)
code [Sovinec et al., 2004] find linearly growing axial modes
on closed field lines in the generalized Harris sheet. These
modes are more unstable in low Lundquist number regimes
and regions with weak magnetic normal component. The
scaling of the linear growth rate and the mode structure show
both similarities and differences in comparison to the Harris
sheet tearing and resistive interchange modes. The formation
of the entropy bubble-blob pair is actually a natural conse-
quence of this axial instability. There are qualitative simi-
larities between the axial instabilities in the generalized
Harris sheet and the ones associated with the initial growing
MHD force imbalance as found in OpenGGCM simulations.
This suggests that the latter can indeed be a spontaneous,
internal instability process. The nonlinear development of
this instability should provide an intrinsic mechanism for the
initiation of a fast and spontaneous formation of the neutral
line in near-Earth plasma sheet. One may infer from these
findings that even though reconnection process often pre-
cedes a substorm onset expansion, the onset trigger process
may not start from reconnection out of a 2D current sheet
equilibrium. The reconnection process itself can be initiated
by the axial tail instability, which is a non-reconnecting, flux-
tube slippage process on closed field lines with finite Bz in the
near-Earth magnetotail.
[5] The axial tail instability studied here appears to have

similar growth and structure to those of the mode previously
described as a resistive tearing instability of the 2D magne-
totail current sheet. There is a long history of analytical and
numerical work on the resistive tearing instability of the 2D
magnetotail current sheet with finite Bz in the context of
substorm trigger problem [e.g., Schindler, 1974; Galeev and
Zelenyi, 1976; Birn et al., 1975; Birn, 1980; Janicke, 1980;
Hesse and Birn, 1994; Harrold et al., 1995; Sundaram and
Fairfield, 1997; Sitnov et al., 2002]. However, the nature of

the linear axial tail instability in our calculations is not
strictly “tearing” in the sense that its dynamics does not
involve a reconnection process which would change the
topology of the magnetic field. In fact, the presence of a
normal component of the magnetic field in a 2D current sheet
strongly inhibits the linear tearing or reconnecting process,
both topologically and dynamically [Harrold et al., 1995].
Instead, what takes place when an axial tail mode becomes
unstable is a slippage process driven by the free energy re-
leased from the pressure gradient along the axial (or tailward)
direction, which would not have been possible in the 2D x-z
plane with the ideal MHD “frozen-in-flux” condition. As
shown in the following calculations, the redistribution of
pressure or entropy through the slippage process is part of a
feedback mechanism that enables the formation and growth
of a linear axial eigenmode in the 2D x-z plane of the mag-
netotail in the absence of reconnection.
[6] There has also been series of theoretical analyses and

numerical simulations that have employed collisionless
kinetic models to address the question whether the 2D
magnetotail plasma can be unstable to the tearing-like, axial
tail mode perturbations. It was first revealed by Lembége
and Pellat [1982] that the ion tearing mode is stable in 2D
current sheets with finite Bz due to the magnetization of
electrons. Similar results were obtained later in theory
analyses [Pellat et al., 1991; Brittnacher et al., 1994; Quest
et al., 1996] and particle-in-cell (PIC) simulations [Pritchett,
1994; Pritchett and Büchner, 1995]. Those kinetic analyses
and PIC simulations assume both isotropy and gyrotropy in
equilibrium particle distributions, and they find the ion
tearing mode stable in the regime defined by l ≳ ri and
kxre< 1. Here l is the scale of current sheet width, ri the
average ion gyroradius in the asymptotic magnetic field
B0 =B(z =�1), kx the wavenumber of perturbation in
x direction, and re the electron gyroradius in the normal
component Bz. However, when Bz! 0, electrons become
less magnetized and those modes with kxre ≳ 1 can indeed
have slow growth which eventually lead to the formation of
X-line and subsequent fast reconnection, as found in the
PIC simulations by Pritchett and Büchner [1995]. Recently,
2D PIC simulations have found slowly growing modes on
closed field lines in kxre ≲ 1 and kxri ≳ 1 regime for a
certain type of multi-scale generalized Harris sheets [Sitnov
and Swisdak, 2011]. Those modes from kinetic simulations
seem to share many similar features with the axial tail
instability in our calculations, including the formation of a
bubble-blob pair and the subsequent appearance of an
X-line from the initially closed field line region.
[7] This work, however, is not meant to reconcile the

difference in basic assumptions and predictions between the
resistive MHD model and the collisionless kinetic model for
the ion tearing mode in the magnetotail with finite Bz com-
ponent, nor is this work meant to be a direct or substantial
advance on the theory of the resistive tearing mode in the
magnetotail by incorporating relevant kinetic electron phys-
ics in MHD model. This work is a follow-up study intended
to interpret the presence of the axial tail instability and
the associated bubble-blob pair formation recently found
in global MHD simulations of a substorm event [Raeder
et al., 2010; Hu et al., 2011]. For that purpose, we have
adopted essentially the same resistive MHD model as that
used in those global MHD simulations. In spite of the fact
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that the magnetotail plasma is nearly collisionless, it is also
well known that the magnetotail plasma sheet plasma is
almost always turbulent [e.g., Borovsky and Funsten, 2003;
Weygand et al., 2005]. The turbulence in the plasma sheet
can produce dissipation and anomalous resistivity, with an
effective Lundquist number ranging from the order of tenths
to tens for the active, thinned near-Earth plasma sheet
[Cattell, 1996]. Nonetheless, caution should be exercised
when directly applying numerical simulation results to the
interpretation of magnetotail observations.
[8] The rest of the paper is organized as follows. We first

present in section 2 an ideal MHD energy principle analysis
of 2D magnetotail configuration in terms of an axial mode in
a thin plasma sheet. We then report NIMROD calculations
of linear MHD instability of two types of current sheet
configurations constructed from generalized Harris sheet
equilibrium in section 3. We summarize and discuss our
findings in section 4.

2. Ideal MHD Energy Principle Analysis

[9] The ideal MHD energy principle was originally
developed for the stability analysis of magnetically confined
plasma in laboratory [Bernstein et al., 1958]. Miura [2007]
later extended the energy principle to the analysis of MHD
stability of semi-confined plasma on closed field lines in the
magnetotail, where the change of potential energy dW =
WF+ dWS, and the fluid energy dWF and the surface energy
dWS are given, respectively, by

dWF ¼ 1

2

Z
dV ½jQ⊥j2 þ B2j2k � j⊥ þr � j⊥j2 þ gpjr � jj2

� Jjj j*⊥ � b
� �

� Q⊥ � 2 k � j�⊥
� �

j⊥ � rpð Þ� (1)

dWS ¼ 1

2

Z
dS

� j* �gpð Þr � j þ j*⊥ B �Q� j⊥ � rpð Þ � B j* �Qð Þ
h i

(2)

Here the equilibrium fields include magnetic field B, field-
line-aligned current Jk, and pressure p (all subscripts “0”
are omitted from equilibrium fields for simplicity). In addi-
tion, B= |B|, b=B/B, and magnetic curvature k= b � rb.
The plasma displacement is denoted as j, and the per-
turbed magnetic field Q =r� (j�B). The specific heat ra-
tio g = 5/3. The superscript “*” denotes a complex conjugate,
and the subscript “⊥” (“||”) denotes the perpendicular (paral-
lel) component relative to the equilibrium magnetic field di-
rection. The integrals

R
dV and

R
dS are over the spatial

volume and surface of the physical domain, respectively.
The meanings of other symbols are conventional. The sur-
face contribution dWS vanishes for certain boundary condi-
tions at the ionosphere, such as r � j = 0 and j⊥= 0, or
x|| = 0 and j⊥= 0. We consider a static 2D ideal MHD
equilibrium B=�rΨ(x,z)� ey for the magnetotail and a
perturbation with dawn-dusk symmetry j ¼
exxx x; zð Þ þ ezxz x; zð Þ½ �eikxx�iot, where (ex,ey,ez) are the unit
vectors along the (x,y,z) axes, respectively. We call modes
of this type as axial tail modes. Here we limit the admissible
plasma displacements only to a sub-class of perturbations
that have neither y component nor y dependence. Such a
constraint leads to the exclusion of the finite-ky modes such

as the high-ky ideal ballooning instability from the consider-
ation here. Furthermore, since we are interested in the most
unstable internal modes, the boundary conditions r � j = 0
and j⊥ = 0 are specified. These boundary conditions remove
the possibility of ideal interchange instability from consid-
erations here. Of course, the exclusion of the ideal balloon-
ing and interchange instabilities from the sub-class of
perturbations considered here does not imply that the 2D
tail equilibrium is stable to ideal ballooning or interchange
instabilities. Imposing those constraints is a method to iso-
late the axial tail modes from arbitrary perturbations.
[10] With the above constraints on plasma displacement,

the potential energy dW in the static 2D equilibrium for
magnetotail can be reduced to

dW ¼ 1

2

Z
dV Q⊥

2 þ B2
�� ��2k � j⊥ þr � j⊥ 2 � 2 k � j�⊥

� �
j⊥ � rpð Þ�� ����

(3)

in the first step of a minimization procedure. For the 2D equi-
librium considered here, there is no free energy drive from the
current density parallel to equilibriummagnetic field. The only
free energy stored in the 2D current sheet is associated with
pressure gradient and unfavorable magnetic curvature.
[11] For the 2D equilibrium of the magnetotail, Bz� EBx,

where E≪ 1. The variation of equilibrium in the x direction is
much slower that the variation in the z direction. To lowest
order in E=Bz/Bx, the equilibrium is approximately uniform
in the x direction, and the perturbation is approximately
wave-like and periodic-like, as represented by j � eikxx�iot .
The perturbation has also a slow variation in x in response
to the slow variation of equilibrium as well as the non-
periodic boundary condition in x direction, so the more
complete form of perturbation can be approximated by
j ¼ exxx Ex; zð Þ þ ezxz Ex; zð Þ½ �eikxx�iot . It is the coefficient
functions xx(Ex, z) and xz(Ex, z) that are subject to the global
boundary conditions in a 2D tail configuration.
[12] The marginal stability condition for the axial mode

can be obtained from a further minimization of the dW in (3)
through an asymptotic expansion in e. To lowest order in e,
this procedure leads to an Euler-Lagrangian equation that is
a fourth-order linear ordinary equation for xz along z. The
solution of the Euler-Lagrangian equation for xz can be used
to evaluate the minimized potential energy

dW ¼ 1

2

Z
dVB2

xk
2
x xz

2 þO Eð Þ���� (4)

The energy principle analysis indicates that for a 2D tail cur-
rent sheet with E=Bz/Bx≪ 1, any internal perturbation of ax-
ial mode type would be stable at leading order in Bz/Bx under
the ideal MHD constraint (i.e., “frozen-in-flux” condition).
Further MHD analysis of the axial instability of the 2D cur-
rent sheet with weak normal component Bz requires the con-
sideration of additional dissipative effects such as those
associated with resistivity. In order to treat the effects of re-
sistivity and also fully take into account the influence of con-
figuration geometry, we adopt an initial-boundary value
approach and linearly evolve an axial initial perturbation of
the 2D current sheets using a resistive MHD model imple-
mented in the NIMROD code. The numerical results confirm
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the resistive nature of the axial tail instability, which are
reported in next section.

3. Resistive MHD Calculations

[13] The resistive MHD model we use for our numerical
calculations is based on the following set of equations:

@r
@t

þr � ruð Þ ¼ 0 (5)

r
@u

@t
þ u � ru

	 

¼ J� B�rpþ mr � rwð Þ (6)

@p

@t
þ u � rp ¼ �gpr � uþ a g� 1ð Þ�J 2 (7)

@B

@t
¼ �r� E (8)

E ¼ �u� Bþ �J (9)

m0J ¼ r� B (10)

where r is the mass density, u the plasma flow velocity,
p the pressure, E the electric field, B the magnetic field,
J the current density, J = |J|, the adiabatic index or specific
ratio g = 5/3, and w ¼ ruþ ruð ÞT � 2

3Ir � u the rate-of-
strain tensor [Braginskii, 1965]. The dissipation of the
system is assumed to primarily come from the anomalous
resistivity � and viscosity m in a weakly collisional or colli-
sionless plasma in the magnetotail. We introduce a multi-
plier factor a in equation (7) in order to study the effects
of Joule heating by setting its value to be either 1 or 0.
The resistive Ohm’s law in (9) is a simple way to capture
the macroscopic consequence of a variety of turbulent dissi-
pation and kinetic demagnetization processes that decouple
plasma and magnetic field line motions and break down the
“frozen-in-flux” condition in the collisionless magnetotail
plasma. We study the MHD stability of the system as a con-
sequence of the violation of the “frozen-in-flux” condition.
Following most resistive MHD stability analyses [e.g.,
Furth et al., 1963; Biskamp, 1993], we first start our stabil-
ity calculations in sections 3.1–3.3 without considering the
effects of Joule heating by setting a = 0. The resistive heat-
ing effects do not directly contribute to the necessary
mechanisms for the onset of the instability, as confirmed later
in our calculations when a is set to be 1 (section 3.4). In
absence of Joule heating (i.e., a = 0), the system described
in the above equations evolves adiabatically and the total
entropy is conserved. When � = 0 and m= 0, the above equa-
tions recover the ideal MHD model used in the energy prin-
ciple analysis in previous section. Both ideal and resistive
MHD models are implemented in the NIMROD code. For
the linear calculations carried out in this study, the linear-
ized versions of the equations in (5) to (10) are solved.
[14] The NIMROD code numerically solves the MHD

equations in (5) to (10) as an initial-boundary value problem
[Sovinec et al., 2004]. High-order finite elements are used to
represent the two-dimensional x-z plane with arbitrarily
shaped boundaries. The third periodic direction in y is dis-
cretized using a pseudo-spectral method. In the temporal
domain, the solutions are advanced with semi-implicit
schemes. For linear modes studied in this work, the dimen-
sion in y is represented by a wavenumber ky = 0. In these

linear calculations, the initial perturbation first evolves
through a transient phase and then settles into an eigenmode
of the system when the perturbation starts to grow expo-
nentially at a constant rate and spatial pattern.
[15] A generalized Harris sheet configuration is consid-

ered to examine the nature of the axial tail instability as
identified from the OpenGGCM simulation of a THEMIS
(Time History of Events and Macroscale Interactions During
Substorms) substorm event [Siscoe et al., 2009; Zhu et al.,
2009; Raeder et al., 2010]. The flux function for a 2D con-

figuration Ψ ¼ �lln
cosh F xð Þzl½ �

F xð Þ can be used to construct an

asymptotic equilibrium of a thin current sheet in the
near-Earth magnetotail through B= ey�rΨ [Schindler,

1972]. The corresponding number density is given by n ¼
n1 þ F2 xð Þ

2 cosh F xð Þz
l

h in o�2
, with temperature T=T1=

T(z!�1) and pressure p = nT. A particular 2D current
sheet configuration can be specified by a choice of F(x).
When F(x) = 1, the Harris sheet configuration is recovered,
and the parameter l determines the scale of the current sheet
width. Two nontrivial choices of F(x) yield a generalized
Harris sheet with a minimum Bz region and another with a
uniform Bz within the equatorial plane (z= 0), respectively
(Figure 1). These two 2D current sheet configurations are
employed in our calculations of the axial tail instability. Ideal
MHD calculations using the NIMROD code find that the 2D
axial tail mode is stable in the one-dimensional (1D) Harris
sheet and the 2D generalized Harris sheets. This is consistent
with the conclusion from the ideal MHD energy principle
analysis in the previous section. In resistive MHDmodel, our
calculations indicate that the axial tail instability can develop
in the 2D generalized Harris sheet configurations.

3.1. Harris Sheet (Bz= 0)

[16] Before getting into details of the linear calculations of
the axial tail instability in generalized Harris sheet config-
urations, we briefly review the linear properties of resistive
tearing instability in a 1D Harris sheet obtained from NIM-
ROD calculations. The Harris sheet configuration is a 1D
equilibrium that is often used to model the thin current sheet
in middle magnetotail [Harris, 1962]. The configuration is

defined by an anti-parallel magnetic field Bx ¼ �tanh
z

l
and

Bz = 0, with a neutral sheet located at z= 0.
[17] A magnetic field perturbation is initially placed at

the center of the computation domain and subsequently
advanced in time as an initial-value problem using a line-
arized version of the full set of resistive MHD equations in
equations (5)–(10). A uniform, constant resistivity � and
viscosity m are prescribed. All fields are periodic in the x
direction along the current sheet, and the current sheet
length in the x direction is chosen as the mode wavelength.
The boundary in the z direction of the simulation domain is
assumed to be a solid, no-slip wall, so that any potential
influence from an external drive or in-flow to the internal
process can be excluded. The linear growth rate scales
inversely with the Lundquist number S to a fractional power,
in agreement with traditional resistive tearing mode theory
[Furth et al., 1963]. For a Harris sheet with l= 1, S = 103,
and the magnetic Prandtl number Prm = 1, the e-folding time
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for the tearing mode growth is about 300tA, where tA is the
Alfvénic time measured near the z=�1 boundary of the
current sheet. The mode structures of the linear tearing
instability show the familiar pattern of a linear, spontaneous,
resistive MHD reconnection process (Figure 2, left column).
Here and in rest of the paper, all numerical results are pre-
sented in normalized, dimensionless units, unless otherwise
specified.

3.2. Generalized Harris Sheet with a Bz
Minimum Region

[18] In order to model the near-tail configuration around
the beginning of the initial growing MHD force imbalance
observed in the OpenGGCM simulation of the substorm
growth phase, we choose a profile for F(x) so that the normal
component of magnetic field Bz in equatorial plane z= 0 has
a minimum region around 10RE. This produces an embed-
ded thin 2D current sheet configuration (Figure 1, left col-
umn). A similar choice of function F(x) was previously used
in other simulation studies of tail configurations [e.g.,
Pritchett and Büchner, 1995; Pritchett and Coroniti, 1995].
[19] Similar to the Harris sheet case, a perturbation of

magnetic field is placed initially around the Bz minimum
region, which is time advanced in the NIMROD code using
a resistive MHD model. A uniform, constant resistivity �
and viscosity m are used. The boundary of the simulation
domain, in both the x and z directions are assumed to be a
solid, no-slip wall in order to focus on the internal processes.
Such a boundary condition is essentially a field-line-tying
boundary condition, which is in general more stable than the

incompressible boundary condition considered in the energy
principle analysis in section 2. Thus, if the system is stable to
perturbations with the incompressible boundary condition, it
should also be stable to perturbations that are subject to the
line-tying boundary condition in the absence of resistivity
and dissipation. On the other hand, in our numerical calcu-
lation here, the more stable (hence restrictive) line-tying
boundary condition is imposed. If the system becomes
unstable to perturbations with the line-tying boundary
condition, it is more likely to be unstable to perturbations
with the less stable incompressible boundary condition.
[20] A growing eigenmode is obtained from the initial-

value calculation only when both the Bz minimum in the
equatorial plane and the Lundquist number S are sufficiently
small. For a specific case where the minimum value Bmin

z ¼
0:01, the current sheet width l=1, the Lundquist number S=103,
and the magnetic Prandtl number Prm = 1, the e-folding time
of the growing eigenmode is about 1200tA, where tA is the
local Alfvénic time near magnetotail lobe locations (z!�1).
The spatial structures of the linear axial instability show
features of both tearing and pressure-driven processes
(Figure 2, middle column). Whereas the patterns of perturbed
magnetic fields still resemble those of a linear resistive tear-
ing mode in a 1D Harris sheet as shown in the middle column
of Figure 2, the spatial distribution of perturbed velocity
becomes highly asymmetric in the x direction. In the
equatorial plane, the flow from the mode is dominantly in
the tailward direction within the minimum Bz region, and the
tailward flow is mostly aligned to the dipole-like equilibrium
magnetic field Earthward of the minimum Bz region (x< 9).

Figure 1. Generalized Harris sheet configurations with a minimum Bz region (Left column) and a uni-
form Bz (Right column) in the equatorial plane (z= 0). Top row: Bz profiles along z = 0 line; Bottom
row: Equilibrium magnetic field lines of the configurations.
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Such a dominant tailward flow generates a bubble-blob pair
in the pressure that tends to flatten the local pressure profile
centered around the region with minimum Bz and thin cur-
rent sheet. Since the equilibrium pressure gradient near the
equatorial plane is mostly Earthward, which is in the same
direction of the magnetic field line curvature, such an

interchange of pressure directly releases the free internal
energy stored in the inhomogeneous distribution of pressure.
Thus, in the linear stage of the axial tail instability, the major
free energy conversion process is not reconnection but rather
a slippage process that is driven by the free energy associ-
ated with pressure gradient and made possible through the

Figure 2. Contours of equilibrium pressure (row 1); tailward flow ux (row 2); northward flow uz (row 3);
perturbed Bx (row 4); perturbed Bz (row 5); perturbed pressure (row 6) from linear resistive instabilities of
1D Harris sheet (left column); generalized Harris sheets with a minimum Bz region (middle column) and a
uniform Bz (right column) along z= 0 lines, respectively.

ZHU ET AL.: NATURE OF AXIAL TAIL INSTABILITY AND BUBBLE-BLOB FORMATION

6



dissipation due to a finite resistivity. Such a slippage process
should not be confused with the ideal interchange instability.
The slippage process involves only local and nonuniform
displacement of a field line, whereas the ideal interchange
process involves global and uniform displacement along a
field line. The slippage or resistive pressure-driven process is
also a 2D process that only requires plasma displacement
within the x-z plane with ky= 0. By contrast, the most unsta-
ble ideal interchange instability is essentially a 3D process
that is characterized by ky≫ 0.
[21] The perturbed magnetic field associated with the

slippage process also tends to reduce Bz as the Earthward
pressure gradient becomes smaller. Previously, a current
sheet thinning process was demonstrated in simulations as a
consequence of the evolution of bubble-blob pairs in entropy
distribution [Yang et al., 2011; Hu et al., 2011]. Here our
calculation indicates that the formation of such a bubble or
blob structure in entropy is the outcome from a self-consistent,
spontaneous, internal eigenmode, the axial tail instability.
Because the linear axial tail instability does not involve mag-
netic reconnection, the bubble-blob formation due to the linear
axial tail instability does not require topological change of
magnetic field lines.
[22] To demonstrate the formation of entropy bubble-blob

in our calculations, we measure the evolving global specific
entropy s(x,t) =

R
p1/gdl/B and entropy parameter [s(x,t)]g

[Wolf et al., 2009] at each given time t and each fixed
location (x, z = 0) along the equatorial plane from the
NIMROD computation results using values of the total
pressure and total magnetic fields including both equilibrium
and perturbation. Here l is the distance along a field line,
which extends between footpoints of each flux tube at the
domain boundary. In general, the entropy bubble-blob pair is
a 2D spatial structure in entropy distribution within the
equatorial plane (z= 0) [Yang et al., 2011; Hu et al., 2011].
For the entropy bubble-blob pair formed through the axial
tail instability, the structure has only spatial variation in the x
direction. In this case, due to a strong Bz field Earthward of
the minimum Bz region, the axial tail instability produces a
dominantly tailward flow. As a result, the spatial profile of
the perturbed entropy parameter along the x axis (z = 0)

shows a dominant blob structure where s(x,t)> s(x,0) (Figure 3,
left panel). A small bubble region where s(x,t)< s(x,0) develops
Earthward of the blob region at the same time. The particular
pattern of bubble and blob structures depends on the Bz profiles
along the equatorial plane of the current sheet.

3.3. Generalized Harris Sheet with a Constant Bz
in Equatorial Plane

[23] The slippage nature of the axial tail instability can be
further inferred from a linear calculation of the resistive
instability of a generalized Harris sheet with a constant Bz in
equatorial plane. Such a configuration can be obtained by a
choice of F xð Þ ¼ e�Bnx=l, where Bn is a constant value and
Bz|z=0 =Bn. This type of 2D current sheet configuration is
well known to be stable to the ion tearing mode in a certain
range of parameter space for collisionless plasma [e.g.,
Lembége and Pellat, 1982], but the nature of this resistive
MHD instability is the primary concern in this study. To
compare with previous cases, we choose a configuration
with Bn = 0.01 and l = 1 (Figure 1, right column).
[24] An initial magnetic perturbation is placed near the

center of the computation domain. Under the same boundary
conditions as in the previous 2D current sheet case, the ini-
tial magnetic perturbation is evolved into a linear resistive
instability for a plasma with uniform S = 103 and Prm = 1.
Due to an overall lower value of the normal component (Bz)
in the equatorial plane, the growth rate is larger than the
previous current sheet case, which results in an e-folding
time about 200tA, where the Alfvénic time tA is similarly
defined at lobe locations. The spatial structure of the mode
has features of both tearing and pressure-driven processes
(Figure 2, right column). The nature of the mode, however,
may be further revealed by noting that the center of the mode
is not localized at the center of domain along the x axis, even
though the normal component of equilibrium magnetic field
is constant along z = 0 and the initial perturbation is localized
tailward of the final mode center location in x. Previous
theories on resistive tearing instability of 2D current sheet
with finite Bz do not take into account the slow variation of
either equilibrium or the global mode structure in x direction
and therefore cannot explain the preferred location of
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the global mode in x as shown in our numerical results
(Figure 2, right column). It is noted that although Bz is con-
stant along the z = 0 line, the pressure gradient and hence
interchange drive decays exponentially tailward. However,
the line-bending force is most stabilizing near the Earthward
boundary. The final mode location along x can therefore be
explained as a balance between the interchange drive and the
line-bending stabilization. All the numerical calculations
here only include axial mode type of perturbations with
ky= 0. Since there is no involvement of finite-ky ideal bal-
looning instabilities in the calculation, the localization of the
global mode structure in these calculation results cannot be
explained by ideal ballooning mode theory.
[25] Similarly, a bubble-blob structure forms in the spatial

profile of the perturbed entropy parameter as part of the axial
tail instability process. In comparison to the case of a current
sheet with a minimum Bz region, the bubble-blob structure
is more symmetric in the x direction in terms of the magni-
tude in s (Figure 3, right panel). In both cases, the entropy
bubble-blob structures are related to but can be quite different
in spatial profile from the bubble-blob structures in pressure.

3.4. Effects of Joule Heating

[26] In previous calculations (sections 3.1), the effects of
Joule heating were not included. Traditionally, Joule heating
effects are not generally considered essential in dynamics of
tearing mode or resistive interchange instabilities [Furth
et al., 1963; Biskamp, 1993]. To address the impact of
resistive heating on the axial tail instability, we set a = 1 in
equation (7) and repeat the linear calculations in previous
sections.
[27] For all three current sheet configurations, the inclu-

sion of Joule heating does not change the spatial structures
of the tearing instability (in Harris sheet) and the axial tail
instabilities (in the generalized Harris sheets) qualitatively.
For example, the contour structures of the perturbed fields from
the axial tail instability of the generalized Harris sheet with a
minimum Bz region along the z=0 line are essentially the
same in the case where the Joule heating is absent and in
the case where the Joule heating is included, respectively
(Figure 4). In all the current sheet configurations, the Joule
heating term essentially does not affect the linear growth
rates. For example, for the generalized Harris sheet with a
Bz minimum region in equatorial plane, Joule heating
effects are able to change the linear growth rate of axial tail
instability by less than 1%.
[28] For the linear axial tail instabilities in both general

Harris sheet configurations, our calculations indicate that
Joule heating does not appear to qualitatively affect the for-
mation of the bubble-blob structure in entropy distribution
(Figure 5). With the inclusion of Joule heating effects, the
profiles of entropy perturbation as measured by gln[s(x,t)/
s(x,0)] along x in the equatorial planes of generalized Harris
sheets for the case with minimum Bz region at time t= 4000
and for the case with uniform Bz along z= 0 line at time
t= 2000 show similar bubble-blob structures as those in
previous calculations where the Joule heating effects are
absent (Figures 3 and 5). These calculation results suggest
that the formation of the bubble-blob structure is primarily a
redistribution in entropy as a consequence of the linear axial
tail instability. In comparison, the contribution from Joule

heating effects does not qualitatively or significantly change
the formation of bubble-blob pattern.

4. Summary and Discussion

[29] In summary, our ideal MHD energy principle
analysis indicates that a 2D tail configuration is stable to
the axial tail mode with ky= 0 to lowest order in Bz/Bx

with the ideal MHD constraint (i.e., the “frozen-in-flux”
condition). Calculations using a resistive model imple-
mented in the NIMROD code find linear axial tail instability
on closed field lines in the 2D generalized Harris sheets.
The axial tail mode is unstable in low S regime and small Bz

regions. Such a resistive axial tail instability would by many
researchers be considered as tearing instability in a two-
dimensional tail configuration. Unlike the resistive tearing
mode in the 1D Harris sheet, the linear development of this
axial tail instability does not involve any reconnection pro-
cess. Rather, the nature of the axial tail mode is dominantly a
slippage process between neighboring flux tubes carrying
different pressure or entropy values as facilitated by resis-
tivity. Such a slippage process is local along the field line,
driven by the interchange free energy, and non-ideal due to
the involvement of resistivity. The axial mode of the 2D
generalized Harris sheet obtained in NIMROD simulations
can be used to explain the growth and structure of the
axial mode associated with the initial growing MHD force
imbalance found in OpenGGCM simulations. A natural
product of this axial instability process is the formation of the
bubble-blob pairs in pressure and entropy distribution. Note
that the effects of Joule heating do not seem to significantly
change the formation of bubble-blob pattern in entropy. This
suggests that as a consequence of the linear axial tail insta-
bility, the formation of bubble-blob structure is primarily a
redistribution in entropy.
[30] As suggested by recent global resistive MHD simu-

lations of substorm events, these axial modes can be a major
cause of the initial growing MHD force imbalance and, in
the nonlinear stage, lead to the subsequent formation of a
near-Earth neutral line and initiate a reconnection process
prior to a substorm onset. A natural consequence of the axial
tail instability is the facilitation of a configuration that ulti-
mately produces reconnection. The time scale of the axial
tail instability generally resembles the time scale of the
substorm growth phase rather than the rapid time scale of an
expansion onset. However, detailed quantitative calculations
depend on the parameter regimes and equilibrium config-
urations. The role of the linear axial tail instability appears to
be setting up a favorable condition for the formation of an
X-line and initiating the subsequent reconnection. Whereas
the linear axial tail instability may correspond to the slower
time scale of the substorm growth phase, it is the ensuing
fast reconnection process that may account for the rapid time
scale of a substorm expansion onset. Such a scenario appears
to be consistent with the results from previous global MHD
simulations of a substorm event [Raeder et al., 2010].
[31] We use the term “axial tail instability” to emphasize

the non-reconnecting nature of the process identified in our
work. Such a process has been studied in many previous
works where it was often referred to as a “resistive tearing
mode” of 2D current sheet with finite Bz [e.g., Schindler,
1974; Galeev and Zelenyi, 1976; Birn et al., 1975; Birn,
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1980; Janicke, 1980; Hesse and Birn, 1994; Harrold et al.,
1995; Sundaram and Fairfield, 1997; Sitnov et al., 2002].
Most previous eigenvalue-based analytical and numerical
analyses on the resistive instability of the 2D magnetotail
configuration did not take into account the non-periodic

variation of either the equilibrium or the global mode
structure along the x direction [Galeev and Zelenyi, 1976;
Janicke, 1980;Harrold et al., 1995; Sundaram and Fairfield,
1997]. Other previous initial-value-based numerical analyses
considered the non-periodic variation of the equilibrium and

Figure 4. Contours of tailward flow ux (row 1); northward flow uz (row 2); perturbed Bx (row 3);
perturbed Bz (row 4); perturbed pressure (row 5) from the axial tail instability of the generalized Harris
sheet with a minimum Bz region along z = 0 line in absence (left column) and in presence (right column)
of Joule heating, respectively.
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the global mode structure along the x direction [Birn, 1980;
Hesse and Birn, 1994]. One major difference between our
work and the previous studies on the resistive instability of
the 2D magnetotail configuration lies in the interpretation of
the nature of the instability. The nature of this axial tail
instability is a relaxation process through the slippage of
neighboring flux tubes with different pressure values. Such a
slippage process is made possible in the MHD model by the
inclusion of resistivity. In reality, this mechanism could
derive from other non-ideal terms in Ohm’s law. This is a
fundamentally different mechanism from the linear tearing
instability of a 1D Harris sheet.
[32] The linear axial tail instability does not involve

magnetic reconnection due to the presence of nonzero Bz and
preserved magnetic field line topology. In contrast, the
resistive tearing instability in a 1D current sheet involves
magnetic reconnection and the change of magnetic field line
topology right from the beginning of the process. One fun-
damental question in substorm physics is whether the initial
trigger process involves a magnetic reconnection or not.
Answer to this question would determine where and when
the initial trigger for substorm onset occurs. In addition,
whether an instability involves a magnetic reconnection
reveals the nature of the relaxation process. The resistive
tearing instability is a process that converts free magnetic
energy to kinetic energy through the change of field line
topology. On the other hand, the axial tail instability mainly
converts the free internal energy to kinetic energy through
the slippage of neighboring flux tubes with different pres-
sure values.
[33] The axial tail mode is significantly more stable than

the resistive tearing mode in a 1D current sheet due to the
presence of finite Bz that characterizes a 2D current sheet.
Under the same conditions as in a 1D current sheet, only
when Bz is below a certain critical value would the axial tail
mode become unstable. This is a direct consequence of the
preservation of magnetic field topology due to the lack of
magnetic reconnection process in the axial tail mode [e.g.,
Harrold et al., 1995].
[34] The growth rate scaling of the axial tail instability

with resistivity is different from the resistive tearing mode of
a 1D current sheet in general. In particular, the growth rate

scaling of the axial tail instability with resistivity depends on
the relative strength of the background normal magnetic
component Bz (as normalized with the lobe magnetic field).
Earlier work by Janicke [1980] considered the 2D current
sheet regime where the Bz is extremely small (i.e., Bz! 0),
so that the growth rate scaling with resistivity, as well as the
mode pattern is similar to the resistive tearing instability of a
1D current sheet. On the other hand, Harrold et al. [1995]
considered another regime of the 2D current sheet where Bz

is sufficiently larger, so that the growth rate scaling is close
to that of a magnetic diffusion. In general, the growth rate
scaling of the axial tail instability is more complicated than
the two extreme regimes.
[35] The spatial structure of the axial tail instability

depends on the equilibrium pressure and Bz profiles in the x
direction, and the center of the mode structure has a pre-
ferred location in the x direction independent of the initial
condition. In contrast, the mode structure of the resistive
tearing instability would prefer the neutral sheet location
where Bz= 0. In the 1D current sheet, the neutral sheet is the
entire z = 0 line and the equilibrium is invariant along the x
direction. Thus, there is not a preferred location for the
center of the resistive tearing mode along z = 0, which is
purely determined by the initial and boundary conditions.
[36] One consequence of the axial tail instability is the

formation of entropy bubble-blob pair, which in nonlinear
stage, as shown in previous work [Yang et al., 2011; Hu
et al., 2011], can accelerate current sheet thinning, formation
of X-line, and eventually reconnection. One main take-away
message from these findings is that even though reconnec-
tion process often precedes a substorm onset expansion, the
onset trigger process may not start from reconnection out of
a 2D current sheet equilibrium. The reconnection process
itself can be initiated by the axial tail instability, which is a
non-reconnecting, flux-tube slippage process on close field
lines with finite Bz in the near-Earth magnetotail.
[37] So far, we have shown in this work that bubble-blob

pairs can form from the axial tail instability in the 2D MHD
simulation and this instability may help explain the bubble-
blob pairs found in observation and other simulations. This
does not necessarily imply that any bubble-blob pair found
in observations or other simulations is a natural consequence
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of the axial tail instability alone. Indeed, 3D processes such
as the interchange and ballooning instabilities, as well as
their couplings to the axial tail instability, may introduce
complications to the bubble-blob formation process. In
addition, the resistive MHD model may not provide an
accurate model for the near-Earth magnetotail dynamics.
Many other non-ideal effects, such as the two-fluid and
kinetic physics, can potentially influence or enhance the
grow rate of the linear axial tail instability. Examination of
those possibilities are subjects of future work. The main
purpose of this work is to propose a new scenario for
understanding the nature of the initial growing MHD force
imbalance that is crucial in triggering the reconnection
itself in the near-Earth magnetotail.
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