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[1] We investigate the global properties of magnetic reconnection at the dayside terrestrial
magnetopause under generic northward interplanetary magnetic field (IMF) conditions.
In particular, we consider a zero dipole tilt case where the y and z components of the IMF
(in GSM coordinates) are equal in magnitude, using three-dimensional resistive
magnetohydrodynamics (MHD) simulations to address the following questions: (1) What
is the geometry of the dayside X line? (2) How is current density distributed over the
magnetopause surface? Using a technique described by Greene* (1992) to track the
magnetic nulls in the system, we identify the dayside X line as a magnetic separator line, a
segment of a magnetic field line which extends across the dayside magnetopause,
terminating in the cusps. We demonstrate that the separator line is the intersection of two
separatrix surfaces which define volumes containing topologically distinct field lines.
Parallel current density, proportional to the parallel electric field in our resistive MHD
simulations, is distributed in a broad, thin sheet which extends across the separator line
and terminates in the cusps. Thus separator reconnection at the dayside magnetopause
displays features of both antiparallel (near the cusp nulls) and component (near the
subsolar separator line) reconnection. We discuss some implications of our results for
spacecraft observations of reconnection signatures.
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1. Introduction

[2] The global topology of the dayside magnetopause
remains something of a puzzle, despite the observational
evidence in favor of Dungey’s [1961, 1963] reconnecting
magnetosphere model which has accumulated over the last
several decades. When the interplanetary magnetic field
(IMF) is due northward (in this paper we shall focus
exclusively on northward IMF conditions), we are accus-
tomed to visualizing magnetospheric reconnection by pro-
jecting the magnetic field onto the noon-midnight meridional
plane, as illustrated in Figure 1. In such a projection, one
naturally identifies the magnetic neutral points (contained
within the yellow regions in Figure 1) as potential sites of
magnetic reconnection. If the magnetosphere were two-
dimensional, such neutral points would correspond to the
projections of neutral lines extending infinitely in both
directions normal to the noon-midnight meridional plane.
Such neutral lines would define the locations where mag-
netic separatrices (solid black lines) intersect to define the
usual three topologically distinct sets of magnetic field
lines: (1) solar wind field lines, which extend to infinity in
both directions (red lines); (2) open field lines, which

extend to infinity in one direction and intersect Earth’s
ionosphere in the other (green lines); and (3) closed field
lines, which intersect Earth’s ionosphere in both directions
(blue lines). It is well known that such neutral lines have a
tendency to collapse into thin current sheets [Dungey,
1953; Parker, 1957; Imshennik and Syrovatsky, 1967;
Syrovatsky, 1971] (Figure 2) within which the non-MHD
terms in the generalized Ohm’s law (e.g., Hall electric fields,
electron pressure tensor, electron inertia, etc.) become
important.
[3] In the two-dimensional context of Figure 1, there are

two null lines (N1 and N2), each of which is defined by the
intersection of two separatrix surfaces which extend infi-
nitely out of the plane of the figure. Thus it is natural to
view the formation of thin current sheets at the null lines as
two independent X line collapse processes. When Earth’s
dipole axis is antiparallel to the IMF, a particular solar wind
field line convecting through the magnetosheath will
make contact with N1 and N2 simultaneously. In a two-
dimensional magnetosphere (or in three dimensions if the
two null lines are long enough), such simultaneous contact
of a solar wind field line with northern and southern lobe
field lines would still occur in the presence of a magnetic
field component out of the plane; a dipole tilt (such that
Earth’s dipole axis is not parallel to the IMF) would be
required to preclude such simultaneous contact (e.g., see
Crooker [1992] for a discussion of the effects of dipole tilt
on magnetospheric magnetic field topology and ionospheric
convection patterns).
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[4] Figure 3 (adapted from Cowley [1983]) illustrates
the effect of dipole tilt on the magnetic field topology of
Figure 1. Again, one views reconnection as a local process,
with two separate current sheets associated with the two
distinct null lines. However, owing to the dipole tilt, there is
no longer a field line joining the two null lines. If one
follows a particular solar wind field line as it convects
through the magnetosheath, it will make first contact with a
lobe field line at N1, producing a new open field line. Later,
the new open field line will make contact with the southern
cusp null, N2, producing a new closed field line on the
dayside.

1.1. Defining Three-Dimensional Magnetic
Reconnection

[5] Vasyliunas [1975] defines magnetic reconnection as
the process by which plasma flows across surfaces which
separate volumes containing topologically distinct classes of
magnetic field lines. In two dimensions, this definition is
robust, since two-dimensional X lines are structurally
stable; that is, such null lines survive generic (nonideal)
two-dimensional perturbations of the magnetic field.
Nevertheless, as Schindler and Hesse [1988] and Hesse
and Schindler [1988] point out, extending this definition to
three dimensional magnetic fields is problematic since
magnetic neutral lines (and associated separatrix surfaces)
do not survive generic perturbations of the magnetic field in
three dimensions (see Greene [1988] and Lau and Finn
[1990] for further discussion of the structural instability of
two-dimensional neutral lines). Thus Schindler and Hesse
[1988] and Hesse and Schindler [1988] advocate a more

general definition based on an earlier formulation by Axford
[1984]: magnetic reconnection occurs whenever a spatially
localized parallel electric field causes the magnetic field to
evolve in time in such a way that two plasma fluid elements
initially threaded by a field line are, at a later time, no longer
threaded by the same field line.
[6] Both of the above definitions suffer from a degree of

arbitrariness, relying on a particular identification of ‘‘plasma
flows.’’ For example, in resistive MHD, ‘‘plasma flow’’
refers to the center of mass bulk velocity. Nevertheless, even
in a plasma with a nonvanishing parallel electric field, one
can often find another field line velocity which preserves
the magnetic field topology. Indeed, one can, in general,
find many field line velocities to describe the same magnetic
field evolution [Newcomb, 1958; Vasyliunas, 1972]. The
essential point is that one cannot infer, from the fact that the
center of mass bulk velocity is not a field line velocity, that
the magnetic field topology is changing or that magnetic
flux within topologically distinct flux domains is changing.
For example, in the context of resistive Hall MHD, the
electron bulk velocity is a field line velocity in the limit of
zero resistivity.
[7] Boozer [2002] defines magnetic reconnection as spa-

tially localized nonideal magnetic field evolution. Here,
‘‘ideal magnetic field evolution’’ refers to evolution which
satisfies the following equation:

@B

@t
þ VB # rrrrB ¼ B # rrrrVB " B rrrr # VBð Þ ð1Þ

where B is the magnetic field and VB is a continuous
velocity field (not necessarily differentiable or even
associated with fluid motion). Equation (1), which implies
that the magnetic flux in any given flux tube is preserved, is
consistent with Faraday’s law if and only if the electric field,
E, can be written as follows:

E ¼ "VB & Bþ R ð2Þ

such that rrrr & R = 0. Note that Boozer [2002] distinguishes
‘‘ideal magnetic field evolution’’ (magnetic flux conserva-
tion) from ‘‘ideal MHD.’’ That is, equation (1) is consistent
with a nonvanishing parallel electric field so long as R =
" rrrrF, where F is a smooth scalar function which satisfies
the magnetic differential equation:

B # rrrrF ¼ Ek: ð3Þ

For example, if the line integral of the electric field around a
closed field line is nonvanishing, then one cannot find a
single valued F satisfying (3); hence the magnetic flux
threading the closed field line is not conserved and
reconnection occurs (e.g., magnetic island formation on a
resonant surface in a toroidal magnetic field configuration is
an example of such reconnection). On the other hand, if the
magnetic field is time stationary, then the line integral of the
electric field around any closed path in the system vanishes,
so the necessary condition (3) for ideal magnetic field
evolution is satisfied (note that boundary conditions may
still preclude the existence of a smooth F); further, the
trivial zero field line velocity implies flux conservation,
despite the fact that the plasma is nonideal.

Figure 1. This figure illustrates reconnection in a two-
dimensional magnetosphere under northward IMF condi-
tions. The Sun is to the left. Thick blue arrows show plasma
bulk velocity vectors. Closed magnetic field lines (with both
ends connected to Earth) are shown in blue; open field lines
(with one end connected to Earth) are shown in green; solar
wind field lines (with neither end connected to Earth) are
shown in red. Diffusion regions surrounding X type null
lines (marked ‘‘N1’’ and ‘‘N2’’) are shown as orange ovals,
while the black lines show the corresponding separatrix
surfaces.
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[8] While the Boozer [2002] definition of reconnection
removes the arbitrariness of the Vasyliunas [1968] and
Schindler and Hesse [1988] definitions (since it makes no
reference to plasma bulk velocities), it is too restrictive for
our purpose, since it excludes steady reconnection in a finite
system with nonvanishing Poynting flux on the boundaries.
For example, in the magnetosphere, reconnection is steady
if the line integral of the parallel electric field around the
separator vanishes, so that the polar cap flux does not
change in time. Nevertheless, in steady state, the line
integral of Ejj along any closed magnetic field line vanishes,
so one can solve (3) for a smooth F (given appropriate
boundary conditions). Indeed, in steady state, the field lines
can be viewed as moving with zero velocity. Thus to
accommodate steady reconnection, we adopt a weaker
definition. Magnetic reconnection occurs whenever the
following two conditions are satisfied: (1) the magnetic
field can be divided into topologically distinct flux volumes
which are defined by intersecting separatrix surfaces; (2) the
parallel electric field is nonvanishing at one or more
locations on the intersections of the separatrix surfaces.
While this definition excludes cases which have tradition-
ally been viewed as reconnection, but for which separatrix
surfaces do not exist (the Schindler and Hesse [1988]

example of a finite-length plasmoid in the magnetotail is a
good example), we think that the definition represents the
most straightforward generalization of the intuitive idea of
magnetic reconnection proposed by Vasyliunas [1975].
[9] Lau and Finn [1990] review the kinematics of three-

dimensional magnetic reconnection, working out the effects,
in the ideal MHD limit, of singular magnetic field structures
(nulls, separator lines, and separatrix surfaces) on the
mapping of the electric potential along magnetic field lines.
The simplest such singular magnetic field structure is an
isolated magnetic null. If the magnetic field, B, is suffi-
ciently well behaved near the null, one can Taylor expand
around the null as follows: B(r) ( r # rrrr B. One then
classifies magnetic nulls according to the eigenvalues of the
rrrr B matrix (denote them by l, m, n). Since the magnetic
field has vanishing divergence, the trace of rrrr B vanishes:
l + n + m = 0. As discussed by Lau and Finn [1990] (we
will follow their terminology, originally introduced by
Cowley [1973], in this paper), there are several cases to
consider: (1) one of the eigenvalues vanishes, and the other
two are either real (corresponding to a two-dimensional
X line) or complex conjugate (corresponding to an O line);
(2) all three eigenvalues are real, and one is positive
(type A null) or one is negative (type B null); (3) one
of the eigenvalues is real and the other two are complex
conjugates (if the real eigenvalue is positive, the null is a
type AS null; if the real eigenvalue is negative, the null is a
type BS null).Figure 2. This cartoon illustrates X line collapse. The left

figure shows an X type neutral line with low current density.
The low current configuration is unstable to a small
perturbation in the component of the current density into
the page. Such a perturbation induces a plasma flow (thick
blue arrows) which acts to reinforce the current perturba-
tion, resulting in a collapse of the X line into a thin current
sheet with a double Y separatrix geometry (see Priest and
Forbes [2000] for a review of the theory of X line collapse).

Figure 3. This figure illustrates the effect of tilting Earth’s
dipole axis in two dimensions. As in Figure 1, solar wind
field lines (with neither end connected to Earth) are shown
in red, open field lines (with one end connected to Earth) are
shown in green, and close field lines (with both ends
connected to Earth) are shown in blue. The separatrix
surfaces are drawn in black. Note that there is no longer a
single field line which passes through both N1 and N2. A
solar wind field line convecting through the magnetosheath
will encounter N1 earlier than N2.

A02202 DORELLI ET AL.: SEPARATOR MAGNETOPAUSE RECONNECTION

3 of 21

A02202



[10] For example, Figure 4 shows the case where Bx = x,
By = y, and Bz = "2z. This is a type B null, since the three
rrrr B eigenvalues are real and there is one negative
eigenvalue: l = 1, m = 1, and v = "2. The yellow line (the
g line), corresponding to the negative eigenvalue, is a field
line such that the magnetic field always points toward the
null. The purple plane (the S surface) corresponds to the two
positive eigenvalues: the field lines in this plane all point
away from the null. For an isolated type A null, all of the
field directions are reversed. Note that there is an important
qualitative difference between two-dimensional nulls and
three-dimensional nulls. In the two-dimensional case there
are two separatrix curves which define domains containing
different topological classes of field lines (as illustrated, for
example, in Figure 2). However, in the three-dimensional
case, there is only one separatrix surface: the S surface.
Thus reconnection associated with an isolated three-
dimensional null is qualitatively different from reconnection
at a two-dimensional null (see Priest and Forbes [2000]
for a discussion of the different types of reconnection
which can occur at an isolated three-dimensional null).
[11] In a system with two magnetic nulls of opposite

types (as shown in Figures 5 and 6), the S surfaces
associated with the two nulls intersect, in general, to form
a separator line, a single magnetic field line which joins the
two nulls. If one projects the magnetic field onto any plane
perpendicular to the separator line, then the projected field
has an X type null at the point where the separator crosses
the plane; and the two associated separatrices correspond to
the intersections of the S surfaces with the plane. Thus one
can view the separator as the three-dimensional analogue of
the standard two-dimensional X line topology, with a guide
field that varies along the X line. However, note that in three
dimensions we require two nulls (a type A and a type B) to
produce such an X line topology; in two-dimensions, such a

topology (with two separatrix surfaces) occurs near a single
null.

1.2. Three-Dimensional Reconnection at Earth’s
Dayside Magnetopause

[12] In three dimensions the magnetic field topology
under exactly northward IMF conditions differs qualitatively

Figure 4. This figure illustrates the magnetic field
topology local to an isolated magnetic null. The null is
the red sphere. The g (spine) curve is shown in yellow; the
S (fan) surface, which is a separatrix defining two
topologically distinct flux domains, is the translucent purple
plane.

Figure 5. This figure illustrates the topology of separator
reconnection. In this configuration there are two magnetic
nulls: a type A null (red sphere) and a type B null (blue
sphere). The two nulls are joined by the yellow field line,
which points from the B null to the A null. This singular
field line is the separator line, the three-dimensional
analogue of the two-dimensional X line; it is defined by
the intersection of the two S surfaces, which play roles
analogous to those played by two-dimensional separatrices
associated with a single X type null).

Figure 6. This figure shows a bird’s eye view (looking
down at the origin from a point along the positive z axis) of
the separator topology shown in Figure 5.
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from that shown in Figure 1. Figure 7 shows the magnetic
field topology of a vacuum superposition (in which a
uniform IMF is superimposed on a dipole field) for the
case where the dipole tilt is zero and the IMF is due
northward. Unlike the situation in Figure 1, in which there
are two distinct separatrix surfaces which intersect to form
two distinct null lines, in Figure 7 there is only a single
surface which separates solar wind field lines from closed
magnetospheric field lines. The separatrix consists of an
infinite number of field lines which join the two cusp
nulls (shown as red and blue spheres in the Figure 7)
(a topologically equivalent plasma equilibrium, with non-
vanishing current density on the spherical surface, was
considered by Hu et al. [2004] in their study of the linear
spherical tearing mode).
[13] The spherical separatrix surface of Figure 7 is

structurally unstable; that is, the surface does not survive
general (nonideal) perturbations of the magnetic field. For
example, Russell [1972] points out that when the IMF clock
angle is nonzero, a particular solar wind field line will
generally encounter an antiparallel (or nearly antiparallel)
lobe magnetic field only in a single hemisphere. Figure 8
illustrates the idea in the context of the vacuum superposi-
tion topology (the IMF clock angle is 45 degrees in the
figure, but the topology is the same for all IMF orienta-
tions). Solar wind field lines which make contact with tail
lobe field lines in one hemisphere (in this context, at one of
the two cusp nulls, the red and blue spheres in Figure 8)

transform into newly opened field lines (shown in green)
which drape over the magnetosphere in opposite senses on
the dawnside and duskside (the Sun is in the positive
X direction in the figure).
[14] In the vacuum superposition topology, there is a

single field line (shown in yellow in Figure 8) joining the
two cusp nulls. While one can identify this field line as a
solar wind field line (shown in red) which makes simulta-
neous contact with the two cusp nulls, one cannot, by
inspection of the magnetic field topology alone, identify
magnetic reconnection as a local process occurring at the
nulls (as one does in two dimensions). Figure 9 shows the
magnetic skeleton of a generic vacuum superposition,
visualized by computing magnetic field streamlines
corresponding to seed points distributed randomly within
small spheres surrounding each magnetic null (100 seed
points per null). Each such set of field lines maps out a
separatrix surface, one for each null. Red field lines corre-
spond to the northern null (depicted by a red sphere); blue
field lines correspond to the southern null (depicted by the
blue sphere). Thus in the generic case, in which the dipole
and IMF axes are not aligned, the single separatrix surface
of Figure 7 bifurcates into two distinct surfaces. The closed

Figure 7. This figure shows a three-dimensional view of
the vacuum superposition topology which forms the basis of
Dungey’s pure northward IMF reconnecting magnetosphere
model. Solar wind field lines (light red) are separated from
closed magnetospheric field lines (light blue) by a spherical
separatrix surface. The red and blue spheres show the
locations of the two cusp nulls, one in each hemisphere, at
which the magnetic field vanishes.

Figure 8. In three dimensions a particular solar wind field
line does not, in general, make contact with northern and
southern tail lobe field lines simultaneously. As Russell
[1972] notes, solar wind field lines which make contact with
tail lobe field lines in one hemisphere will transform into
open field lines which drape over the dayside magneto-
sphere in opposite senses on the dawn and dusk sides of the
magnetosphere (green tubes in the figure). Nevertheless, in
the vacuum superposition topology shown here, there is, for
any IMF orientation, a single field line which joins the two
cusp null points. Though one can interpret this closed field
line as a solar wind field line (shown in red) which makes
contact with the two cusp nulls simultaneously, one cannot,
from inspection of the magnetic field topology alone,
identify magnetic reconnection as a local process occurring
at the nulls.
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yellow field line is identified as the separator line since it is
defined by the intersection of the two separatrix surfaces.
[15] The separator line of Figure 9 is the three-

dimensional analogue of the two-dimensional X lines of
Figure 3, but whereas there are two distinct separator lines
in the two-dimensional case, there is only one in the three-
dimensional case. Further, just as the reconnection electric
field at a two-dimensional null line is (by definition) not
localized at one particular position on the line, the parallel
electric field at a three-dimensional separator line is not, in
general, localized at a particular position on the separator
line (e.g., near a null point). This presents a problem in three
dimensions, since one cannot determine, from the magnetic
topology alone, the spatial distribution of the parallel
electric field. Is the parallel electric field concentrated
around the magnetic nulls or at some other location along
the separator line? To what extent do magnetic nulls and
separator lines constrain the dynamics of reconnection in
three dimensions (as they clearly do in two dimensions)?
Can an arbitrary, locally hyperbolic field line (i.e., a line
with the property that the magnetic field projected onto the
planes perpendicular to the line has a hyperbolic null) play
the role of a reconnection X line in three dimensions?
Addressing such questions requires one to move beyond

magnetic topology and address the geometry of the mag-
netic field: How is current density distributed on the
magnetopause surface? Traditionally, there have been two
competing hypothetical answers to this question, both of
which are motivated by two-dimensional magnetic recon-
nection theory: (1) the component reconnection hypothesis
and (2) the antiparallel reconnection hypothesis. In the
following section we review observations and theoretical
models which support both of these hypotheses. While a
number of the models reviewed below are kinetic models, in
this work we address the component/antiparallel reconnec-
tion issue in the context of resistive MHD. While resistive
MHD is incapable of addressing the reconnection timescale
problem (i.e., the strong scaling of the reconnection rate
with plasma resistivity), it is currently the only model which
is capable of addressing the global three-dimensional
geometry of the dayside magnetopause X line; indeed, our
resistive MHD calculations demonstrate that the component
and antiparallel hypotheses are not mutually exclusive in a
global three-dimensional magnetosphere.

1.3. Component Reconnection Hypothesis

[16] Component reconnection at the dayside magneto-
pause was originally treated by Sonnerup [1974] as a

Figure 9. This figure illustrates Dungey’s vacuum superposition topology under generic northward IMF
conditions. In general, the spherical separatrix surface of Figure 7 breaks up into two distinct surfaces,
illustrated here by two sets of magnetic field streamlines: (1) red lines which pass through the northern
cusp null (red sphere), (2) blue lines which pass through the southern cusp null (blue sphere). The
intersection of the two surfaces defines a separator loop, consisting of two separator lines which join the
northern null to the southern null (the yellow tube is a closed field line which shows the approximate
location of one of these separators). Note that there are now three topologically distinct classes of field
lines: (1) solar wind field lines (extending to infinity in both directions), (2) open field lines (extending to
infinity in one direction and intersecting the central purple sphere in the other), (3) closed field lines
(intersecting the purple sphere in both directions).
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generalization of two-dimensional ‘‘guide field’’ reconnec-
tion, in which reconnection along a two-dimensional
hyperbolic neutral line is modified by the addition of a
constant background field parallel to the neutral line. Since
the current density is directed along the neutral line in such
models, Sonnerup [1974] suggested that one should identify
the X line at the magnetopause current sheet with the
direction of the integrated (across the sheet) current density
(Figure 10). Since the magnetic field on the magnetosheath
side of the current sheet is typically weaker than that on the
magnetosphere side, Sonnerup [1974] argued that magnetic
reconnection would be geometrically impossible whenever
the clock angle, q, of the magnetosheath field is less than
cos"1(Bo/Bi) (here, Bo is the ‘‘outer’’ magnetosheath field,
and Bi is the ‘‘inner’’ magnetospheric field). Cowley [1976],
however, pointed out that the magnitude of the guide field
may vary arbitrarily across the current sheet (as described,
for example, by Sonnerup and Priest [1975]), making the
identification of a unique X line direction, e.g., parallel to
the direction of the integrated current, problematic. If the
component of the magnetic field parallel to the X line can
vary arbitrarily across the current sheet, then the angle
between the X line and Bi can, in principle, range from
0 to q, the X line need not be parallel to either the current
density or the integrated current (as is the case in two-
dimensional, constant guide field reconnection). Thus there
seems to be no a priori objection to the possibility that
subsolar reconnection is possible for all nonvanishing q.
[17] The arguments of Cowley [1976] raise an interesting

question: How low must the magnetic shear at the subsolar

magnetopause be before magnetic reconnection is geomet-
rically precluded? Spacecraft observations have not yet
provided an unambiguous answer to this question. Gosling
et al. [1982] presented indirect evidence, observations of
fast magnetopause flows (consistent with acceleration at
rotational discontinuities) by the ISEE 1 and 2 spacecraft, of
magnetic reconnection for magnetic shear angles less than
90". Gosling et al. [1990] even observed so-called ‘‘flow
reversal events,’’ in which the magnetopause stagnation
flow field is distorted by the motions of newly reconnected
flux tubes, for cases where the magnetic shear was as low as
50". While Paschmann et al. [1993] observed, with the
AMPTE/IRM spacecraft, evidence of plasma transport from
the magnetosheath into the magnetosphere at the low shear
(where the field rotated by less than 30" from the magneto-
sheath to the magnetosphere) magnetopause, such plasma
entry was interpreted as either a ‘‘nonreconnection transfer
process’’ or a consequence of high-latitude reconnection at
one of the cusp nulls. Indeed, the AMPTE/IRM data
analysis presented by Paschmann et al. [1993] suggests
that the changes in plasma conditions associated with low-
latitude, low-shear magnetopause crossings, bulk velocity
direction, plasma temperature, and temperature anisotropies,
are not, in general, accompanied by a clear rotation of the
magnetic field. Nevertheless, evidence of reconnection
equatorward of the polar cusp under northward IMF con-
ditions has been found in AMPTE/CCE [Fuselier et al.,
1997], Polar-TIDE [Chandler et al., 1999], and Polar-
TIMAS [Fuselier et al., 2000] magnetopause crossings
(though Russell and Le [2000] interpret the Polar-TIMAS
component reconnection case study [Fuselier et al., 2000]
as a case of antiparallel reconnection tailward of the cusp).

1.4. Antiparallel Reconnection Hypothesis

[18] In contrast to the component reconnection hypothe-
sis, the antiparallel reconnection hypothesis posits that
magnetopause reconnection is localized around regions
where the magnetosheath and magnetospheric magnetic
fields are antiparallel [Crooker, 1979]. ‘‘Antiparallel’’ is
usually defined in the context of a magnetic field model
[e.g., Tsyganenko, 1995a; Tsyganenko and Stern, 1996] for
which the magnetopause surface, separating the solar wind
magnetic field from the magnetospheric magnetic field, is
unambiguously defined. The X line is then identified with
the locus of points on the magnetopause for which the
magnetic field vectors on either side of the surface point in
opposite directions (i.e., qc = 180" in Figure 10). While
component reconnection was initially motivated [Sonnerup,
1974] by the two-dimensional theory of driven guide field
reconnection, the antiparallel construction is similar in spirit
to a tearing mode calculation in which one assesses the
tendency of an initial current sheet (for which the compo-
nent of the magnetic field normal to the sheet vanishes) to
undergo magnetic reconnection. Indeed, the linear tearing
mode analysis of Quest and Coroniti [1981], which dem-
onstrates that the growth rate scales inversely with the
magnitude of the guide field, provided early theoretical
motivation for antiparallel reconnection. A recent linear
analysis of three-dimensional resistive tearing, however,
suggests that it is not appropriate (or even meaningful) to
compute two-dimensional tearing mode growth rates at
separate locations on the magnetopause surface [Hu et al.,

Figure 10. This figure illustrates the geometry of
component reconnection, viewed from the Sun. Red arrows
labeled ‘‘Bi’’ show the magnetospheric magnetic field; blue
arrows labeled ‘‘Bo’’ show the magnetosheath magnetic
field. The left figure shows a case where reconnection is
geometrically possible, according to the Sonnerup criterion.
The right figure shows a case where reconnection is
precluded by the Sonnerup constraint (i.e., the projection of
the magnetic field in the plane perpendicular to the average
current in the sheet has no hyberbolic null).*
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2004]. In the Hu et al. [2004] analysis, an initially closed
magnetic field topology equivalent to that of Figure 7
becomes open due to resistive tearing of the spherical
separatrix surface which carries the confining current. The
breakup of the spherical tearing surface is associated with a
parallel electric field which is not localized around the
magnetic nulls. In contrast, the Quest and Coroniti [1981]
analysis predicts that the tearing mode growth rate should
have local maxima at the antiparallel loci which, by defini-
tion, contain the magnetic nulls.
[19] In two dimensions the presence of a significant guide

field can suppress nonlinear reconnection for a number of
reasons. Rogers et al. [2001], for example, argues that the
dispersive properties of whistler and kinetic Alfvén waves
facilitate fast reconnection by preventing the collapse of
X type neutral lines into macroscopic Sweet-Parker sheets.
Therefore if the guide field is large enough to suppress such
waves, then one expects an associated reduction in the
reconnection rate. Rogers et al. [2001] observed such a
reduction in two-fluid simulations of nonlinear reconnection
starting from a double Harris sheet equilibrium (in which
electron inertia breaks the frozen flux constraint). Using a
two-dimensional electromagnetic particle-in-cell (PIC)
code, Swisdak et al. [2003] demonstrate that the presence
of a guide field, in combination with a density gradient
normal to the reconnection plane, can suppress reconnection
by inducing a diamagnetic electron drift which convects the
X line at a speed exceeding the Alfvén speed. Using a three-
dimensional electromagnetic PIC code, Tanaka et al. [2004]
show that rapid triggering of the tearing mode instability in
a Harris equilibrium (associated with the fast growing lower
hybrid drift instability at the edges of the current sheet) is
suppressed in the presence of a guide field. Karimabadi
[2005] argues that if tearing at the dayside magnetopause is
enhanced by its coupling with the Weibel instability
[Weibel, 1959] (which is driven by electron temperature
anisotropies induced by lower hybrid fluctuations at the
edges of the current sheet [Daughton et al., 2004]), then
fast tearing may be suppressed by the presence of a guide
field which suppresses the Weibel instability; nevertheless,
Karimabadi [2005] also find in their hybrid simulations that
fast, steady state reconnection is possible for moderately
large magnitudes of the guide field (of the order of the
reconnecting field components).
[20] The observational support for the antiparallel hypoth-

esis can be roughly categorized as follows: (1) in situ
observations of fast plasma flows and particle velocity
distributions which provide some information about the
location of the observing spacecraft relative to the recon-
nection site; (2) remote sensing of ionospheric signatures of
reconnection at the magnetopause. Evidence in the first
category is usually in the form of Alfvénic plasma flows and
D-shaped ion velocity distributions [Cowley, 1982] indicat-
ing plasma acceleration across rotational discontinuities
[Gosling et al., 1991; Kessel et al., 1996; Russell et al.,
1998; Fuselier et al., 2000; Le et al., 2001; Onsager et
al., 2001; Scudder et al., 2002; Lavraud et al., 2002; Phan
et al., 2003; Trattner et al., 2004]. Most such in situ
evidence seems to be associated with northward IMF
conditions (the Gosling et al. [1991] study is a rare
exception in which the IMF was weakly southward); this
is consistent with the notion that magnetic reconnection is a

local process associated with the magnetic neutral points in
the Dungey [1961, 1963] model. We note, however, that not
all evidence of high-latitude (poleward of the cusp) recon-
nection under northward IMF conditions is consistent with
the notion that reconnection is strongly localized around the
antiparallel locus. For example, the Trattner et al. [2004]
analysis considered two distinct events in which the Polar
spacecraft crossed the cusp under northward IMF condi-
tions. In one event (22 September 1997), the location of the
reconnection site, inferred from a time-of-flight analysis of
ion velocity distributions observed by the TIMAS instru-
ment, was consistent with antiparallel merging. In the
second event (30 October 1997), however, the time-of-flight
analysis yielded a reconnection location which, though
located at high latitude, was associated with a magnetic
shear angle of about 100". Nevertheless, Trattner et al.
[2004] interpret this discrepancy as evidence that the high-
latitude X line, while originating at the antiparallel locus,
extends some significant distance away from the locus.
[21] Observations in the second category, remote sensing

of ionospheric signatures of magnetopause structure, have
produced conflicting results. Using data from the Super
Dual Auroral Radar Network (SuperDARN), Coleman et al.
[2001] observe ionospheric convection patterns which, they
argue, are consistent with a bifurcated magnetopause X line
under southward IMF conditions. Petrinec and Fuselier
[2003], however, argue that the ionospheric gap in the
mapped magnetopause antiparallel locus predicted by
Coleman et al. [2001] is associated with inaccuracies in
the numerical methods used to map field lines (namely,
errors associated with tracing field lines near magnetic nulls
as well as poor resolution of field line seed points). Indeed,
Fuselier et al. [2002] has shown evidence from one of the
imagers aboard the IMAGE (Imager for Magnetopause to
Aurora Global Exploration) spacecraft that a proton auroral
spot observed poleward of the auroral oval maps to the
antiparallel locus on the magnetopause surface (both the
mapping and the magnetopause surface were defined by
the T96 Tsyganenko model [Tsyganenko, 1995b, 1996]. The
spot, Fuselier et al. [2002] argue, is produced by Lyman
alpha emission from '1 keV protons which, having been
energized by magnetic reconnection poleward of the cusp
under northward IMF conditions, undego charge exchange
in the upper atmosphere to become excited neutral hydro-
gen. In contrast, under southward IMF conditions, Fuselier
et al. [2002] argue that proton auroral emissions associated
with magnetic reconnection map to the subsolar magneto-
pause. Recent simultaneous observations by the Cluster and
IMAGE spacecraft show that under northward IMF con-
ditions, the usual in situ (Cluster) signatures of reconnection
poleward of the cusp, namely, bulk velocity acceleration
satisfying the Walén test), mapped along magnetic field
lines (using various versions of the Tsyganenko model) to
the proton auroral spot observed by IMAGE [Phan et al.,
2003].

1.5. What Have We Learned From Simulations?

[22] Given the ambiguities and contradictions present in
many of the spacecraft observations, global three-
dimensional simulation of Earth’s magnetopause is an
essential tool for the investigation of the geometry of
dayside magnetopause reconnection. Unfortunately, despite
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the fact that the magnetosphere is a nearly collisionless
plasma which is far from local thermodynamic equilibrium,
computational resources have not yet reached a level which
makes possible global three-dimensional kinetic (e.g., PIC)
simulations of the magnetopause. Resistive MHD simula-
tion is still the preferred approach, despite its well-known
limitations (in particular, its inability to model fast recon-
nection in the high Lundquist number limit [Dorelli et al.,
2004]).
[23] What, then, have resistive MHD simulations taught

us about the geometry of the dayside magnetopause X line?
Over the last decade, a number of global MHD simulation
studies have provided evidence that the magnetospheric
magnetic field topology is consistent in many respects with
the vacuum superposition topology originally envisioned
by Dungey. Fedder et al. [1995] investigated the depen-
dence of the magnetotail topology on the IMF; while the
magnetic field topologies shown in their Plate 2 show
evidence of a global separator structure (which Fedder et
al. [1995] identify as the intersection of the magnetopause
with the surface separating IMF field lines from open
field lines), it is not clear whether or not this separator is
related to the separator line which joins the two magnetic
nulls in the generic vacuum superposition topology shown
in Figure 7. Russell et al. [1998] compare magnetic field
data from the Polar mission with results from a global
MHD simulation, arguing that under the sustained north-
ward IMF conditions which occurred from 0230 to 0800 on
29 May 1996 the simulated magnetic field topology was
consistent with Dungey’s pure northward IMF topology
(Figure 7), in which magnetosheath plasma is captured
onto closed field lines by simultaneous reconnection at
the two cusp nulls. The nulls were not tracked in the
simulations, however. Figure 5 of Russell et al. [1998]
shows a noon-midnight meridional projection of the
magnetic field topology; nevertheless, given the fact that
separatrices in two-dimensional projections need not
coincide with three-dimensional separatrices, it is not clear
whether (1) there is a single closed surface separating closed
from open field lines, and (2) whether plasma is flowing
across such a separatrix (a necessary condition for the
occurrence of simultaneous cusp reconnection). Similar
simulation evidence of simultaneous cusp null reconnection
under sustained northward IMF conditions was presented
more recently by Le et al. [2001] and Li et al. [2005]; again,
however, no attempt was made to track (in the simulation
data) three-dimensional topological properties of the
magnetic field (magnetic nulls, separatrix surfaces, and
separator curves).
[24] A number of global MHD simulation studies of

magnetopause merging in the last decade have been inter-
preted in the context of the vacuum superposition topology.
Crooker et al. [1998] explained lobe cell ionospheric
convection (in which the convection cell is confined to
the open polar cap) as a consequence of electric potential
drops along open magnetic field lines which ‘‘overdrape’’
across the dayside magnetopause, threading a broad diffu-
sion region on the dayside magnetopause as they converge
toward two cusp nulls (one in each hemisphere). The
vacuum superposition topology, in which a separator line
extends from the southern to the northern cusp null, was
invoked to motivate the existence of these ‘‘newly recon-

nected’’ overdraped field lines. A similar magnetic field
topology was found in the simulations of Tanaka [1999] and
Watanabe et al. [2004], though their interpretation of the
relationship between ionospheric convection patterns and
magnetopause reconnection under northward IMF condi-
tions differs from that of Crooker et al. [1998] (who
considered the case where the z component of the magnetic
field in GSM coordinates vanishes). Considering a pure
duskward IMF case, Siscoe et al. [2001] identify two
magnetic nulls and a separator line joining the two nulls,
demonstrating that the parallel electric field is weaker at the
nulls than at the subsolar point (by about a factor of three).
Siscoe et al. [2001] thus infer that reconnection under
duskward IMF conditions bears more resemblance to com-
ponent reconnection than to antiparallel reconnection.
[25] One can organize the results summarized in the

previous two paragraphs (our citations are by no means
an exhaustive list) into two categories of models: (1) models
which treat magnetic reconnection as a local process,
analogous to two-dimensional reconnection at an X line,
and possibly associated with a magnetic null (representative
models include Russell et al. [1998]; Tanaka [1999]; Le et
al. [2001]; Li [1999]; Watanabe et al. [2004]); (2) models
which treat magnetic reconnection as an inherently global
process, involving three-dimensional separatrix surfaces the
intersections of which define global separator lines [e.g.,
Fedder et al., 1995; Crooker et al., 1998; Siscoe et al.,
2001]. Models in the first category visualize the reconnec-
tion process as a local ‘‘breaking’’ and ‘‘rejoining’’ process
analogous to that which one associates with a two-
dimensional X type neutral point. In contrast, models in
the second category view the reconnection process as a
global process which occurs at a rate which is given by a
line integral (perhaps along a separator line) of the parallel
electric field. Interestingly, a number of the models
described in this subsection [Tanaka, 1999; Watanabe et
al., 2004; Crooker et al., 1998; Siscoe et al., 2001] fall into
separate categories (local versus global reconnection)
despite the fact that they explicitly interpret the simulation
results in the context of the same separator reconnection
topology, in which three-dimensional separatrix surfaces
intersect at separator lines joining isolated magnetic nulls.
This is not surprising, given that one cannot determine, from
the magnetic field topology alone, the spatial distribution of
the parallel electric field on the magnetopause surface. To
our knowledge, Siscoe et al. [2001] is the first attempt to
identify magnetic reconnection with the parallel electric
field along a separator line in a global MHD simulation of
the magnetosphere.
[26] In this paper we revisit the problem of determining the

topology and geometry of dayside magnetopause magnetic
reconnection under northward IMF conditions. Whereas
Siscoe et al. [2001] considered a zero dipole tilt case in
which the IMF points in the duskward direction, we
consider a generic northward IMF case, with zero dipole
tilt and an IMF clock angle of 45". We address the following
questions:
[27] 1. What is the topology of the dayside magnetopause

magnetic field under generic northward IMF conditions?
What is the role of magnetic nulls, and associated separatrix
surfaces, in constraining the dynamics of magnetopause
magnetic reconnection?
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[28] 2. What is the geometry of the dayside X line? Does
the X line correspond to the antiparallel locus or does it
extend across the subsolar region?
[29] 3. How is the parallel electric field distributed on the

magnetopause surface? Can magnetic reconnection be
viewed as a local process, with a spatially localized diffu-
sion region, or is magnetopause reconnection an inherently
global process, with the reconnection rate determined by a
line integral of the electric field?

2. Results

2.1. OpenGGCM Model

[30] The results presented in this paper were obtained
using the OpenGGCM (Global Geospace Circulation
Model) code, a resistive MHD code which is maintained
at the Institute for the Study of Earth, Oceans, and Space
(EOS) at the University of New Hampshire (UNH).
OpenGGCM is a finite difference code (originally devel-
oped by J. Raeder; see, for example, [Raeder et al., 1995;
Raeder, 2003]) which computes the interaction of the solar
wind with Earth’s magnetosphere. The code is parallelized,
using the message passing interface (MPI), to run on
massively parallel computing architectures. The computa-
tions were performed on a 340 processor Beowulf cluster
(Zaphod) at EOS.
[31] In the outer magnetosphere (outside a sphere of

radius 3.5 RE centered around Earth), the normalized
resistive MHD equations are solved using explicit finite
difference schemes (to be described below):

@r
@t

¼ "rrrr # rUð Þ ð4Þ

@rU
@t

¼ "rrrr # rUUþ pIð Þ þ J& B ð5Þ

@u

@t
¼ "rrrr # uþ pð ÞU½ $ þ J # E ð6Þ

@B

@t
¼ "rrrr& E ð7Þ

rrrr # B ¼ 0 ð8Þ

E ¼ "U& Bþ 1

S
J ð9Þ

rrrr& B ¼ J ð10Þ

u ¼ 1

2
rU2 þ p

g " 1
ð11Þ

where I is the unit tensor and g is the ratio of specific heats.
The variables are dimensionless, having been normalized as

follows: spatial coordinates are normalized by 1RE;
the plasma density, r, is normalized by a reference value,
r0 = 104 cm"3; the magnetic field, B, is normalized by the
magnitude of Earth’s dipole field at 1 RE; the bulk
velocity, U, is normalized by the reference Alfvén speed,
VA = B0/(4 p r0)

1/2; the plasma pressure, p, and energy
density, u, are normalized by the reference magnetic
energy density, B0

2/(8 p); t is normalized by the Alfvén
time, tA = l/VA (where l = 1 RE); the current density, J,
and the electric field, E, are normalized so that equations
(9) and (10) are satisfied. The Lundquist number, S, is
constant in time and spatially uniform (save for a spherical
region of radius 6 RE around Earth, where the resistivity is
set to zero). The reader should note that S is defined here
in terms of the reference magnetic field at 1 RE, as well as
the reference density of 104 cm"3. Thus the Lundquist
number defined in terms of magnetosheath parameters,
with a magnetic field of about 50 nT, a density of about
30 cm"3, and a scale of a few Earth radii, gives a
magnetosheath Lundquist number, SMS, of approximately
S/10.
[32] Equations (4)–(11) are solved on a nonuniform

rectilinear grid in GSE coordinates. In the y and z dimen-
sions the grid is exponential, extending out to ±40 RE, with
a minimum grid spacing of 0.1 RE at y = z = 0, at the
subsolar point, and a maximum grid spacing of 0.5 RE at
±40 RE. In the x direction, the grid extends from 24 RE on
the dayside to 200 RE in the tail; the grid is again
nonuniform, with grid points concentrated around the day-
side magnetopause, where the resolution is (0.025 RE. We
have performed convergence tests to verify that the magne-
topause reconnection physics we describe in subsequence
sections is not sensitive to the grid resolution (though we do
not yet have the computational resources to investigate
global convergence for the Lundquist number, S = 5000,
used in this study). The simulation resolution is such that
the magnetopause current sheet is well resolved over most
of the dayside magnetopause surface.
[33] As discussed by Raeder [1999], the gasdynamic part

of the MHD equations, equations (4)–(6), are spatially
discretized using a hybrid scheme in which fourth-order
centrally differenced fluxes are combined with first-order
Rusanov fluxes (with the high-order fluxes dominating in
smooth regions), while Faraday’s law, equation (7), is
discretized using the constrained transport method devel-
oped by Evans and Hawley [1988] (this method pre-
serves the constant (8) to machine precision). All of the
equations are advanced in time using a second-order pre-
dictor-corrector scheme. The boundary conditions on the
dayside are fixed in time, while those on the other five
boundaries are free (i.e., normal derivatives vanish).
[34] Field-aligned currents (FAC), Jjj, are computed just

outside a spherical region of radius 3.5 RE, centered around
Earth, and mapped to a spherical-polar ionosphere grid at
1 RE using a dipole magnetic field model. The mapped
FAC are used to compute the source term in the current
continuity equation:

rrrr #S # rrrrF ¼ "Jk sin I ð12Þ
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where F is the ionospheric potential on a spherical grid at 1
AU,S is a conductivity tensor, and I is the inclination of the
dipole field at the ionosphere. Equation (12) is solved using
a Galerkin pseudospectral method on a spherical-polar grid,
with the boundary condition F = 0 at the equator. The
ionospheric conductivities include contributions from EUV
ionization, diffuse auroral electron precipitation, and
discrete aurorae associated with parallel electric fields (see
Raeder et al. [2001] for details).
[35] In what follows, we analyze results from a single run

(used to produce Figure 11), corresponding to an IMF clock
angle of 45. The dipole tilt is zero, and the following steady
solar wind boundary conditions are used: the IMF By and Bz
are both 5 nT; the solar wind speed is 400 km/s; the solar
wind density is 5 cm"3; the solar wind pressure is 7 pPa.
The code was run long enough for a steady state to
be reached on the dayside (typically this requires approxi-
mately 15 min of simulated time, though we run the
simulation for 2 hours of simulated time). The Lundquist
number, S, was set to 5000.

2.2. Tracking Magnetic Nulls in the OpenGGCM
Simulation

[36] We make use of an algorithm developed by Greene
[1992] to track magnetic nulls in the simulation. Greene’s

algorithm is based on the concept of the topological degree
of a map f : Rn! Rn, relative to the domain D % Rn. The
map f takes the vector x = h x1, x2,. . ., xni to the vector
f = h f1(x), f2(x),. . ., fn(x)i. Let Jf be the Jacobian of
f. Then the topological degree [Kronecker, 1869] of f,
relative to domain D, is defined as

deg f;Dð Þ ¼
X

x2f "1 0ð Þ
sgn det Jf xð Þ" #$ % ð13Þ

where 0 is the n-dimensional zero vector. Thus the
topological degree is the difference between the number
of solutions of f = 0 for which det(Jf (x)) > 0 and the number
for which det(Jf (x)) <0. In other words, the topological
degree counts the difference between the number of type A
nulls and the number of type B nulls within D. One can
compute the topological degree by evaluating the Kronecker
integral [see, e.g., Polymilis et al., 2003]:

deg f;Dð Þ ¼ G n=2ð Þ
2pn=2

Z
@D

Pn
i¼1 Aidx1:::dxi"1dxiþ1:::dxn

f 21 þ f 22 þ # # # f 2n
" #n=2 ð14Þ

where G(x) is the gamma function and

Ai ¼ "1ð Þn i"1ð Þ
det Mð Þ ð15Þ

M is the n by n matrix such that Mi1 = fi and Mij+1 =
@fi
@xj

with
j ranging over {1,. . ., i "1, i + 1,. . ., n}.
[37] For example, when the map in question is the

magnetic field, B, the Kronecker integral takes the follow-
ing form:

deg B;Dð Þ ¼ 1

4p

Z
@DB

B # ds
B3

ð16Þ

where we have transformed the integral into magnetic field
space, DB is the image of D under the map B(x), ds is a
differential surface element in magnetic field space, and B is
the magnitude of the magnetic field (B is the distance from
the origin in magnetic field space).
[38] By Gauss’ Law, if @DB encloses the origin once (i.e.,

if @D contains a single magnetic null), then deg(B, D) = ±1
(the sign is determined by the orientation of @DB, which is,
in turn, determined by the map B from D to DB). Similarly,
if D contains N nulls, then one can break up (16) into a sum
of integrals, each one corresponding to a subvolume, Ds,
enclosing a single null.
[39] Greene [1992] discretizes (16) by sampling magnetic

field vectors on D, triangulating the sampled points (see
Figure 12), transforming the resulting triangles into
magnetic field space (thus approximating @DB by the
polyhedron @ ~DB in magnetic field space; see the right panel
of Figure 12), and computing the following sum:

deg B;Dð Þ (
XNT

i¼0
Ai ð17Þ

Figure 11. This figure shows a global view of the
interaction of the solar wind with Earth’s magnetosphere,
simulated by the OpenGGCM model. Earth is the blue
sphere in the center. The two cut planes show plasma
density; the bow shock is clearly visible as the sharp
increase (green-red transition) in plasma density, and the
dayside magnetopause can be clearly identified, in the
subsolar region, as the sharp density drop. White tubes
show bulk plasma streamlines, while colored tubes show
magnetic field streamlines (color coded according to the
magnetic field magnitude). The solar wind conditions for
this run were steady, with an IMF clock angle of 45".
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where NT is the number of triangles, and

Ai ¼ 4 tan"1 tan q1 þ q2 þ q3ð Þ=4½f
& tan q1 þ q2 " q3ð Þ=4
& tan q2 þ q3 " q1ð Þ=4
& tan q3 þ q1 " q2ð Þ=4$1=2g ð18Þ

Ai is the area of the spherical triangle corresponding to the
projection of the ith triangle of @ ~DB onto the unit sphere in
magnetic field space: cosqi = (Bj # Bk)/jBjj|Bkj, where the
indices {i, j, k} are cyclic permutations of {1, 2, 3}. The
areas of the spherical triangles are oriented such that Ai has
the same sign as the volume element Bi # Bj & Bk > 0.

2.3. Simulated Vacuum Superposition Topology

[40] Figure 13 shows a cut of the OpenGGCM simulation
in the GSE z = 0 plane, illustrating magnetic flux pileup and
associated plasma depletion under generic northward IMF
conditions. The top panel shows the magnetic field magni-
tude; the bottom panel shows the plasma pressure. Green
arrows show the projection of the plasma bulk velocity
vectors into the plane. The two purple lines show the
locations where the two magnetic separatrix surfaces
(separating solar wind, open and closed field lines) intersect
the GSE z = 0 plane. We identify the subsolar magnetopause
with the intersection of these two purple lines, which occurs
at XGSE ( 10.35 RE (note the ‘‘double Y’’ topology of
the projected separatrices, reminiscent of two-dimensional
Sweet-Parker reconnection).
[41] Although Figure 13 is a snapshot taken after 6840 s

of simulated time (this time step was chosen randomly), the
dayside magnetosheath and magnetopause are remarkably
steady during the 2 hours of simulated time. Figure 14
demonstrates the steadiness of the magnetopause location
and current density. The blue dots show the subsolar
magnetopause location, defined to be location, along the
Sun-Earth line, of the local maximum of the current density,
as a function of time. After an initial transient phase lasting

about 1000 s (and associated with the fact that the initial
condition is not a static equilibrium), the dayside magneto-
pause settles into a steady state which persists until the end
of the simulation, after 7200 s of simulated time. The green
dots show the current density at the subsolar magnetopause,
demonstrating that there is a significant and steady recon-
nection electric field at the subsolar magnetopause under
generic northward IMF conditions. As we will see later, this
current density is associated with a thin current sheet which
forms near a magnetic separator line which extends across
the subsolar magnetopause, terminating in the polar cusps.
[42] Figure 15 shows the magnetic skeleton computed

from the OpenGGCM simulation after 6840 s of simulated
time. The red lines in the figure are magnetic field stream-
lines corresponding to 180 seed points randomly distributed
within spheres of radius 1.5 RE around the northern cusp
null (marked ‘‘A’’) located at the point N1 = ("2.4 RE,
6.3 RE, 12.9 RE). Likewise, the blue lines are streamlines
with seed points within a 1.5 RE radius of the southern
cusp null (marked ‘‘B’’) located at the point N2 =
("3.2 RE, "6.5 RE, "13.5 RE). Thus the blue and red
field lines lie approximately on the S surfaces associated
with the two nulls. The yellow line is the magnetic
field streamline which passes through the point (10.35 RE,
0 RE, 0 RE), the approximate location of the magnetopause
along the Sun-Earth line. Note that this line passes very
close to the two nulls used to visualize the S surfaces. Also
note that the two S surfaces come into contact at the
approximate location of the yellow field line. Thus the
yellow line gives the approximate location of the magnetic
separator defined by the intersection of the two separatrix
surfaces associated with nulls N1 and N2.
[43] It is clear from Figure 15 that the topology of the

simulated magnetopause is more complex than that of the
simple vacuum superposition. While the vacuum superpo-
sition topology has two magnetic nulls, a single type A null
and a single type B null, the topology shown in Figure 15
has more than two magnetic nulls. Indeed, there appear to
be four distinct clusters of magnetic nulls, two in the

Figure 12. This figure illustrates the calculation of the topological degree of a discretized magnetic
field, relative to an OpenGGCM finite difference cell. Each computational cell is decomposed into
12 triangles (green cube), each of which is mapped (using the values of the magnetic field at the eight
vertices of the cell) to a corresponding triangle in magnetic field space (blue cube). In this example there
is a single linear null (red sphere) such that Bx = x, By = y and Bz = "2z.
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northern polar cusp and two in the southern polar cusp.
Nevertheless, while the number of nulls in each cluster
varies in time (with nulls being created and destroyed in
pairs), the locations of the clusters remain relatively steady.

Further, if one computes the topological degree of each
cluster, one finds that the large-scale topology is consistent
with a simple two-null separator topology. This is illustrated
in Figure 16, which shows the number of type A nulls (red

Figure 13. This figure illustrates (top) magnetic flux pileup and (bottom) associated plasma depletion
upstream of Earth’s dayside magnetopause under generic northward IMF conditions. Green arrows show
the bulk velocity projected into the plane. The purple lines show the intersections of the solar wind/open
and open/closed magnetic separatrix surfaces with the plane (note the ‘‘double Y’’ topology, reminiscent
of Sweet-Parker reconnection). The green circle is the inner MHD boundary condition, where field
aligned currents are mapped to the ionosphere; the blue circle is the inner resistivity boundary, within
which the resistivity is set to zero. The plasma resistivity is constant everywhere outside the blue circle.
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squares) and type B nulls (blue circles) within each cluster
as a function of time. After a steady state has been reached
(i.e., after about 1000 s of simulated time), the number of
type A nulls in the northernmost cluster always exceeds the
number of type B nulls by one; thus this cluster has a
topological degree of 1. In contrast, the southernmost
cluster has a topological degree of "1. The two intermediate
clusters always have equal numbers of type A and type B
nulls, corresponding to a vanishing topological degree. This
is not surprising, given that nulls must always be created in
A-B pairs. Thus the dayside magnetopause magnetic field
topology is consistent, on the large scale, with a simple
separator topology, despite the fact that the polar cusp
topology is more complex (with multiple nulls in each polar
cusp). We note that with four clusters of magnetic nulls, the
topology shown in Figure 15 bears some resemblance to the
‘‘split separator’’ topology proposed by Crooker [1979], in
which there are four magnetic nulls on the dayside magne-
topause. This resemblance is superficial, however, since two
of the null clusters in Figure 15 have vanishing topological
degree, whereas all four nulls in the split separator topology
have nonvanishing degree.
[44] We argue that magnetopause X lines should be

identified with the intersections of the S surfaces associated
with the cusp magnetic nulls. While there may be small-
scale X lines and associated separators joining nulls within a
local cluster (we have not yet addressed this interesting
question), there is also clearly a large-scale dayside X line
which joins nulls in opposite polar cusps. Since this X line
extends across the dayside magnetopause from the southern

Figure 14. This figure shows the temporal behavior of the maximum current density magnitude in the
interval 8.8 RE < x < 20 RE along the Sun-Earth line in GSE coordinates. We identify this current density
maximum as the subsolar magnetopause. A steady state is reached very early in the simulation, after
about 1000 s of simulated time.

Figure 15. This figure shows the magnetic skeleton
computed from the OpenGGCM simulation after 6840 s of
simulated time. Type A nulls are shown as red spheres, and
type B nulls are the blue spheres. The red lines are magnetic
field lines which lie approximately on the SA surface; the
blue lines lie approximately on the SB surface. The yellow
line is a closed field line which lies approximately at the
intersection of the two separatrix surfaces.
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type B null cluster to the northern type A cluster, the
dayside separator line displays properties of both antiparal-
lel reconnection and component reconnection. If one proj-
ects the magnetic field line into a plane perpendicular to the
large-scale separator line at the subsolar point, on obtains an
X type neutral point with a strong guide field. In contrast, if
one performs a similar projection at high latitude, one
obtains an X type neutral point with a weak guide field.
Thus by observing the magnetic field topology at different
locations along the separator line, one can obtain results
which are consistent with either component reconnection or
antiparallel reconnection. The two hypotheses, which at first
glance seem to be mutually exclusive, can be viewed as
different aspects of a single dayside X line.

2.4. Three-Dimensional Separatrices

[45] The separator topology shown in Figure 15 is con-
sistent with that obtained in previous MHD simulations
[Fedder et al., 1995; Tanaka, 1999; Crooker et al., 1998;
Siscoe et al., 2001; Watanabe et al., 2004]. Nevertheless, as
we have previously noted, despite obtaining similar mag-
netic field topologies, previous studies have differed in their
conclusions about the implications of the separator topology

for dayside magnetopause reconnection. For example, while
Tanaka [1999] and Watanabe et al. [2004] describe recon-
nection as a local process associated with magnetic nulls
(they make heavy use of two-dimensional magnetic field
projections to illustrate such local reconnection processes),
Crooker et al. [1998] and Siscoe et al. [2001] view
reconnection as a global process associated with a broad
diffusion region on the dayside magnetopause surface. One
cannot, on the basis of the magnetic skeleton alone, distin-
guish between the two interpretations; i.e., one cannot
determine the ‘‘location’’ of reconnection from Figure 15,
since the magnetic skeleton contains no information about
how the parallel electric field is distributed along the
separator line.
[46] Figure 17 illustrates the geometry of separator

reconnection at the simulated magnetopause. The surface
is constructed by computing the set of magnetic field
streamlines corresponding to seed points at the nodes of a
spherical polar grid (5 RE < r < 15 RE, 0" < q < 180",
"120" < f < 120") with dimensions 1000 & 100 & 100.
The radial coordinate of the surface, for a given q and phi, is
the location of the last open field line. The surface is painted
with the parallel current density, which is proportional to the

Figure 16. This figure shows the temporal variation of the dayside magnetopause magnetic field
topology. The four panels show the number of magnetic nulls within spheres of radius 2 RE centered at
C1, C2, C3, and C4, respectively. Red squares show the number of type A nulls, while blue circles show
the number of type B nulls.
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parallel electric field, since the Lundquist number has been
chosen to be larger than that associated with our discretiza-
tion errors (e.g., the resistive current sheet is well resolved
along this surface). The thick yellow line is a solar wind
field line just sunward of the subsolar magnetopause; note
how this field line becomes distorted as it approaches the
magnetopause: the IMF clock angle is 45 degrees, but the
clock angle decreases through the magnetosheath to about
21 degrees just upstream of the magnetopause current sheet.
This rotation of the solar wind field line as it approaches
the magnetopause is required by the separator topology;
the solar wind field line merges into the dayside separator
line as it makes contact with the polar cusp nulls in opposite
hemispheres.
[47] The colored tubes in Figure 17 are bulk velocity

streamlines, computed from seed points distributed in a
circle around the Sun-Earth line at GSE z = 15 (in the solar
wind). Note that since the surface corresponds to the last
open field line, it is only an approximate representation of
the actual magnetic separatrix, accurate to about 0.02 RE
(the resolution of the radial search). This is why the two
open field lines are visible in the figure, despite the fact that
nearby velocity streamlines have not yet crossed the surface.
Nevertheless, it is clear that solar wind fluid elements are

flowing across the surface separating solar wind field lines
from open field lines (note that the flow is steady, so
streamlines are the same as fluid element paths); thus
according to the Vasyliunas [1975] definition of magnetic
reconnection, Figure 17 illustrates that separator reconnec-
tion can be viewed as a subsolar ‘‘component reconnection’’
process in which solar wind field lines reconnect with
closed lines at the separator, producing new open field lines
(shown in green).
[48] Interestingly, however, separator reconnection also

involves the creation of new closed field lines, as illustrated
in Figure 18. This figure is identical to Figure 17, with
the exception of the surface, which has been replaced by the
boundary between open and closed field lines. Note that
the plasma flow around the flanks does not penetrate the
surface. Further, the direction of the flow is organized by the
the separator line, not the IMF, e.g., the outflow has a
‘‘butterfly’’ pattern with a symmetry axis aligned approxi-
mately along the separator line. It is natural to identify
this flow as a reconnection outflow emanating from the
separator line and confined to the open field line region
between the two separatrices. Note, however, that some
solar wind plasma has access to closed field lines (i.e., it
flows across the surface) in the polar cusps. Thus the
separator reconnection process illustrated in Figures 17
and 18 can be divided into two distinct processes: (1) the
creation of new overdraped open field lines at low lati-
tudes along the separator; (2) the creation of new closed
field lines at high latitudes, near the cusp nulls. The first
process can be viewed as a component reconnection

Figure 17. This figure illustrates the geometry of
separator reconnection at the OpenGGCM simulated day-
side magnetopause. The surface is the boundary between
open and solar wind field lines; it is color coded according
to the parallel current density. The yellow tube is a solar
wind field line just sunward of the subsolar magnetopause;
the two green tubes are open field lines which lie on the
computed separatrix surface on either side of the separator.
Spheres embedded in the surface are type A (red) and type
B (blue) nulls. The multicolored tubes are bulk velocity
streamlines originating in the solar wind and fanning out
around the magnetopause (eventually intersecting the
separatrix surface).

Figure 18. This figure illustrates how dayside magneto-
pause separator reconnection allows solar wind plasma to
flow onto closed field lines. The figure is identical to
Figure 17, with the exception of the surface, which is now
the boundary between closed and open magnetic field lines.
Note that plasma is now flowing across this surface at high
latitudes, near the cusp nulls.
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process (e.g., in a plane perpendicular to the separator line at
low latitude) in which the guide field is large. The second
process can be viewed as an example of ‘‘double cusp’’
reconnection in which a solar wind field line makes simul-
taneous contact with the two polar cusps, producing new
closed field lines (as described, for example, by Song and
Russell [1992]). Rather than being mutually exclusive, both
processes, component reconnection and antiparallel recon-
nection, are different aspects of the same separator recon-
nection process.

2.5. Three-Dimensional Sweet-Parker Reconnection

[49] The results of the previous two sections demonstrate
the following: (1) under generic northward IMF conditions,
and when the plasma resistivity is constant, there is a
dayside magnetopause X line, a magnetic separator, which
extends across the subsolar point, terminating at magnetic
nulls in opposite polar cusps; (2) the dayside magnetopause
current density takes the form of a broad, thin ribbon which
also extends across the subsolar region, terminating in the
cusps. However, the geometry of the X line differs from that
of the current ribbon: the clock angle of the ribbon
(approximately equal to that of the IMF) is larger than the
clock angle of the separator ((21"). There are good
theoretical reasons to expect current sheets to be aligned
with separators, in both two [Dungey, 1953; Imshennik and
Syrovatsky, 1967] and three [Longcope and Cowley, 1996]
dimensions. However, Longcope and Cowley [1996] con-
sidered the case (appropriate for the solar corona) where the
plasma beta is small and the magnetic field evolution is
approximately force-free (at least until current sheets form
and Alfvénic reconnection outflows impact the dynamics).
The plasma beta in the simulated magnetosheath is large,
and the plasma flows are significant; thus one cannot appeal
to the force-free calculations of Longcope and Cowley
[1996] to motivate a separator current ribbon at the dayside
magnetopause. In other words, while it seems clear that the
global separator topology will constrain the dynamics of
thin current sheet formation at the dayside magnetopause, it
is not obvious that the current sheet should, in the strongly
driven high beta magnetosheath/magnetopause system, be
aligned with the separator line.
[50] Figure 19 shows the intersections of the two separa-

trices with the XGSE"YGSE plane for six different values of
ZGSE. The black lines show the separatrix intersections,
which themselves intersect to define the intersection of the
magnetic separator with the plane. The green arrows illus-
trate the projection of the bulk velocity field into the plane.
The plane is color coded according to the parallel current
density. For increasing ZGSE, the YGSE coordinate of the
intersection of the separatrix lines increases. The two
separatrix lines (again, these are the intersections of the
two separatrix surfaces shown in Figures 17 and 18) seem to
merge over a finite region. While the finite length of the
merging region is likely an artifact of our inability to
numerically resolve the two surfaces (due to errors involved
in computing the surfaces), it is clear that the two separatrix
lines form an approximate ‘‘double Y’’ geometry which is
reminiscent of the two-dimensional Sweet-Parker double Y
separatrix geometry. Further, although the local maximum
of the parallel current density does not coincide with the
magnetic separator (as Figures 17 and 18 demonstrate), the

edges of the sheet correspond roughly to the points at which
the two separatrix lines diverge.
[51] As newly reconnected open field lines in Figure 18

overdrape (in opposite senses on the positive and negative
YGSE sides of the subsolar point) the magnetopause, they
are strongly kinked near the cusp magnetic nulls. In the
usual local picture of cusp reconnection, this kinking of the
field lines, and the associated plasma flow reversals [see,
e.g., Gosling et al., 1990], are identified as signatures of a
local reconnection process occurring poleward of the
cusp, a solar wind field line is typically visualized as
reconnecting with a lobe field line, producing a new over-
draped field line. However, Figure 18 clearly shows that
the diffusion region (as determined by the parallel current
density) extends across the entire dayside magnetopause,
rather than being localized at the cusp nulls. Given that
global separator reconnection produces new open field
lines which are strongly kinked in the cusps (due to the
null–null topology), and given that such field line kinking
is usually (and unjustifiably, based on field topology alone)
identified with a local cusp reconnection process, a natural
question arises: Can global separator reconnection pro-
duce flow reversals which are traditionally associated with
local cusp magnetic reconnection under northward IMF
conditions?
[52] Figure 20 is an example of a simulated high-latitude

(ZGSE = 8 RE) flow reversal, in which the YGSE component
of the bulk velocity has a sign opposite to that of the
magnetosheath stagnation point outflow for positive YGSE
and ZGSE. This is demonstrated by the fact that the flow
reversal, where the YGSE component of the bulk velocity
changes sign, occurs at about (5.6 RE, 4 RE), which is also
approximately where the two purple separatrix lines inter-
sect. Note also that there is an enhancement of the positive
YGSE component of the bulk flow duskward of the separatrix
intersection, in the region between the two separatrices.
Note that the intersection of the two purple curves in
Figure 20 corresponds to the intersection of the magnetic
separator (the X line) with the plane. Thus this simulated
flow reversal should be interpreted as a local signature
of the global dayside separator reconnection process
which occurs at every point along the separator line, in-
cluding the subsolar point, where the parallel electric field
is nonvanishing.

3. Conclusions and Discussion

[53] We have obtained numerical solutions of the three-
dimensional resistive magnetohydrodynamics (MHD)
equations describing steady magnetic reconnection at
Earth’s dayside magnetopause under generic northward
IMF conditions. The calculation was performed with the
OpenGGCM (Open Geospace Global Circulation Model)
code, making use of the Zaphod Beowulf cluster www.
zaphod.sr.unh.edu) at the University of New Hampshire.
This study focused on a single case in which the dipole
tilt was zero and the IMF (interplanetary magnetic field)
clock angle was 45". The plasma resistivity was constant
in space and time (save for the region within a sphere of
radius 6 RE centered at the origin in GSE coordinates),
corresponding to a Lundquist number of 5000 (based on a
1 RE length scale, the Earth’s dipole magnetic field at 1 RE,
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and a density of 10,000 cm"3). This translates into a
Lundquist number of about 1000 based on the average
magnetosheath density, magnetic field magnitude, and
length scale.

[54] We addressed the following questions in our study:
(1) What is the topology of the dayside magnetopause
magnetic field under generic northward IMF conditions?
(2) What is the geometry of magnetic reconnection at

Figure 19. This figure illustrates the double Y geometry of the magnetic separatrices. The black lines
show the intersections of the separatrices of Figures 17 and 18 with the XGSE"YGSE plane at six ZGSE
locations. The green arrows show the projected bulk velocity field. The plasma resistivity is zero inside
the blue circle. The green circle is the intersection of the inner MHD simulation boundary (where field
aligned currents are mapped to the ionosphere).
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Earth’s dayside magnetopause under generic northward
IMF conditions? (i.e., how is current density distributed
on the magnetopause surface?).
[55] Our results can be summarized as follows:
[56] 1. The dayside magnetopause magnetic field topol-

ogy is characterized by two clusters of magnetic nulls, one
in the northern polar cusp and one in the southern polar
cusp. While the number of nulls in the two clusters varies in
time, the locations of the clusters are very steady, as is the
location of the magnetopause current sheet.
[57] 2. While the magnetic topology in the cusps is

complex, consisting of multiple type A and type B nulls
being created and annihilated in pairs, the large-scale
topology is simple, i.e., the topological degree of the
northern cluster is 1, while the topological degree of the
southern cluster is "1. Further, the magnetic skeleton is
consistent, on the large scale, with a null–null separator
topology, with the dayside X line extending across the
subsolar magnetopause and terminating in the cusps.
[58] 3. Current density is distributed in a broad, thin

ribbon which extends across the dayside magnetopause
and terminates in the polar cusps. While the axis of the
ribbon does not coincide with the separator, the edges of the
ribbon correspond closely to the locations where the two
three-dimensional separatrix surfaces diverge.
[59] 4. The geometry of dayside separator reconnection

displays features of both component and antiparallel recon-
nection. Near the subsolar point, plasma flows around the
flanks of the magnetopause perpendicular to the separator
line, crossing the boundary between solar wind field lines

and open field lines (thus producing new overdraped open
field lines); in the cusps, solar wind plasma flows onto
closed field lines as solar wind field lines approach the
separator (the intersection of the two separatrix surfaces).
While new open field lines are strongly kinked in the cusps,
this is due to the null–null separator topology and not due
to a local reconnection process in the cusps, the parallel
electric field is not localized to the cusps.
[60] An important implication of conclusions 1–4 above

is that one cannot identify magnetic reconnection with local
properties of the magnetic field topology. In particular, one
cannot, by identifying cusp magnetic nulls and associated
kinked magnetic field lines, infer that reconnection is a local
process which occurs at a null. While it is certainly possible
for local current sheets to form near isolated magnetic nulls,
reconnection at such nulls is qualitatively different from that
associated with two-dimensional nulls or three-dimensional
null–null lines (e.g., there is only one magnetic separatrix
associated with an isolated three-dimensional null). Without
determining the global topology of the magnetic field, by
constructing a global picture of the magnetic interconnec-
tions (via separator lines) among nulls, one cannot obtain a
complete picture of the reconnection topology. For example,
it is clear that our simulated magnetopause has X lines
which join nulls in opposite cusps.
[61] Another interesting feature of the reconnection

observed at our simulated magnetopause is the global nature
of the diffusion region. The diffusion region is not localized
in the cusps (contrary to the traditional ‘‘double cusp’’
northward IMF reconnection cartoon [Dungey, 1963; Song

Figure 20. This figure illustrates a simulated high-latitude (ZGSE) reversal of the YGSE component of the
plasma bulk velocity associated with separator reconnection. The purple lines show the intersections of
the magnetic separatrices with the plane. The green arrows show the projected bulk velocity vectors.
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and Russell, 1992]). Instead, the diffusion region appears to
be closely associated with the region of space where the two
three-dimensional magnetic separatrices make contact.
While the geometry of the separatrix intersection is remi-
niscent of the typical Sweet-Parker double Y topology, we
have not yet been able to determine whether the separatrices
make contact over a finite region, i.e., whether the separator
is a ribbon or a line is an interesting unresolved issue.
[62] We end with some further caveats and suggestions

for future work. We have not addressed the issue of the
plasma resistivity model. Ideal MHD cannot model the
kinetic processes in the diffusion region which give rise to
violations of the frozen flux theorem; therefore we must
explicitly add nonideal terms to Ohm’s law in order to
produce magnetic reconnection which is not a result of
numerical diffusion. For the sake of simplicity, and in order
to make contact with previous numerical and analytic work,
we have used constant plasma resistivity in our simulation,
making sure that our explicit resistivity is larger than the
numerical resistivity. Since it is well known that the plasma
resistivity model can have a significant impact on the
geometry of two-dimensional reconnection diffusion
regions (e.g., the Petschek [1964] slow shock model can
be recovered in resistive MHD simulations when the plasma
resistivity is localized in such a way that the length and
width of the diffusion region are proportional to the resis-
tivity), an interesting extension of the present work would
be a study of the effects of the plasma resistivity model on
the topology and geometry of dayside magnetopause recon-
nection. Further, while it is interesting and encouraging that
we have obtained simulation results which are reminiscent
of two-dimensional Sweet-Parker reconnection, our results
also suggest that resistive MHD is incapable of modeling
fast reconnection in the high Lundquist number limit (owing
to the well known Sweet-Parker timescale problem).
[63] Finally, we have not yet made an attempt to predict

observable spacecraft signatures of separator reconnection.
While Figure 20 suggests that local plasma flow signatures
which have traditionally been identified with local cusp
reconnection might also be consistent with separator recon-
nection, we have not yet performed any detailed analyses to
compare our simulation with observations. Some of the
questions which might be addressed include: Can the
kinked magnetic field lines near the nulls at the ends of
the separator be approximated as one-dimensional rotational
discontinuities (as one assumes, for example, when
performing the Walén tangential stress balance test
[Hudson, 1970; Sonnerup, 1981] at the magnetopause)?
Can separator reconnection produce plasma flow reversals
which are consistent with those observed by spacecraft?
What are the observable signatures of separator reconnec-
tion at the low shear subsolar magnetopause? Are observed
cusp ion dispersion signatures and ion D-shaped distribu-
tions consistent with a global separator topology? While
some of these questions (ion dispersion and D-shaped
distributions) are beyond the scope of resistive MHD, it
may be possible to address them in a qualitative way with
test particle simulations.
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