
Using Automated Code Generation to Support High Performance
Extended MHD Integration in OpenGGCM

Kai Germaschewski and Joachim Raeder
Space Science Center and Department of Physics
University of New Hampshire, Durham, NH 03824

Abstract. Automatic code generation is a technique that takes the specification of an
algorithm at a high abstraction level and turns it into a well-tuned computer code. For
finite-volume / finite-difference based discretizations, this higher abstraction level can
be a stencil computation. At the backend, the code generator features modules which
generate optimal code for specific hardware architectures, for example conventional ar-
chitectures (x86) using SIMD instructions (e.g. SSE2), or heterogeneous architectures
like the Cell processor or GPGPUs. The definition of the computation is agnostic to
the actual hardware used, as a high-performance implementation tailored to the specific
architecture will be generated automatically.

The OpenGGCM code, a global magnetosphere model, has been converted to
use an automatically generated implementation of its magnetohydrodynamics (MHD)
integrator. The new version enables us to take advantage of the Cell processor’s com-
putational capability and also shows performance improvements of up to 2.3× on a
conventional Intel processor. The code generation approach also facilitated the recent
extension of the MHD model to incorporate Hall physics.

1. Introduction

One of the major barriers for entry for prospective supercomputer users is the difficulty
in developing codes to run on increasingly complex architecture. The paradigm shift
in scientific computation to heterogeneous architecture at all core counts (Brodtkorb
et al. 2010; Crawford et al. 2008) is making this challenge much more pervasive. This
drastic change in scientific computing is fueled by the fact that physical limitations
in chip design have led to a saturation of single-core performance. Thus performance
gains are driven by an increase in parallelism on multiple levels: a large number of
distributed nodes, each featuring on or more multi-core processors, which have further
parallelism in the form of instruction-level parallelism and single instruction, multiple
data (SIMD) processing. Heterogeneous architectures like the STI (Sony, Toshiba, and
IBM) Cell processor and GPUs (graphics processing units) hold the promise for the
future of scientific computation.

Despite their advantages, heterogeneous architectures introduce significant chal-
lenges in constructing programs that are able to take full advantage of their theoretical
performance. Achieving high utilization of the available floating point units involves,
e.g., avoiding stalls waiting for data and employing SIMD instructions when applicable.
In this paper, we present the design and performance of a toolkit for automatic genera-
tion of highly efficient code for stencil computations. Using this technology, a scientist
can describe a PDE in a symbolic way, while the toolkit takes care of generating code

2 K. Germaschewski and J. Raeder

customized to a particular hardware architecture like the Cell processor or GPUs. As
opposed to recent efforts that use domain specific languages (DSLs), e.g., Williams
et al. (2008); Christen et al. (2011), here we extend the scripting language Python with
the functionality required which facilitates extending functionality without having to
redesign a DSL.

We demonstrate the potential of our approach for both achieving improved perfor-
mance as well as higher productivity using a production science code: the OpenGGCM
model.

The OpenGGCM global magnetosphere model

The Open Geospace General Circulation Model (OpenGGCM) is a global model of
Earth’s space environment based on magnetohydrodynamics (MHD) and is used to
simulate the interaction of the solar wind with the magnetosphere, ionosphere, and
thermosphere (Raeder et al. 2008). This model has been developed and continually
improved over more than 15 years. It is also a community model that can be used
for runs on demand at the NASA/GSFC Community Coordinated Modeling Center
(CCMC, http://ccmc.gsfc.nasa.gov).

Advancing the MHD equations is by far the computationally most expensive part
of the model, which is parallelized using domain decomposition and MPI. The legacy
model is written in Fortran77 with a custom preprocessor and was typically run on
clusters using up to 100s of cores, limiting resolution to ∼100× 106 grid cells in a non-
uniform Cartesian grid. These runs achieve resolutions of ∼0.1RE (Earth radii) near the
Earth. However, the typical thickness of boundary layers and current sheets is about
1/10 of that value. Furthermore, as detailed later, including Hall physics in the model
also substantially increases computational requirements.

2. Code generation toolkit design

Frontends. The purpose of the code generator’s frontends is to provide an interface
for application developers to define stencil computations. The code generator itself is a
Python module that defines a rather straight-forward DSL on top of Python to specify
stencil computations. Hence a user does not need to learn the Python language itself
for simple tasks, even though the code he/she is writing is actually Python code. For
instance, defining a 2D 5-point Laplacian is simply expressed as:

rhs = ((f(−1,0) − 2∗f(0,0) + f(1,0)) / (dx∗∗2) +

(f(0,−1) − 2∗f(0,0) + f(0,1)) / (dy∗∗2))

While this basic interface was used in converting OpenGGCM to exactly match
the existing discretization, the toolkit also provides a high-level interface allowing the
user to specify equations closer to their mathematical description. E.g., in the Magnetic
Reconnection Code (MRC), the equation ∂tρ = −∇ · (ρv), where v = p/ρ, is specified
as:

V = 1./RHO ∗ P # velocity V, momentum P, density RHO

rhs RHO = − Divg(RHO ∗ V)

This generates code using a finite-volume discretization, calculating fluxes on
faces by flux-averaging from the cell centers. The MRC actually uses the ZIP aver-
age for the flux calculation, a variation which is specified by “Divg(ZIP(RHO, V))”.

Automatic Code Generation in OpenGGCM 3

The frontend has facilities to specify complex stencil computations as they occur
in OpenGGCM, including a Harten-Zwas type high-order/low-order switched scheme
involving limiters which requires min/max and conditionals. Expressing the numerics
as stencil computations makes it easier to change the underlying numerical scheme
and physics-based set of PDEs, as it is now concisely expressed and separate from
its implementation. The definition of the scheme takes up about 350 lines, while the
original Fortran implementation required more than 2100 lines. This can enable major
productivity increases – as shown later, implementing the Hall term was essentially
done in a mere 8 lines of added code.

Backends. Backends are responsible for taking the abstract description and turning
it into code for a particular architecture. Interoperability between existing applications
and generated kernels is of major importance – the toolkit can generate implementations
which are pluggable into existing legacy applications or kernels designed to interoperate
with libraries like PETSc (Balay et al. 2004). The toolkit currently has two completed
backends: conventional x86 processors with SSE2/SSSE3 SIMD extensions and STI
Cell processors. Work on a GPGPU backend generating CUDA code is in progress.

Backends apply a sequence of transforms to the stencil computation that results in
hardware-tailored code. Transforms can be shared between backends, e.g., the SSE2
and Cell backend share a conversion to SIMD: Both processor architectures provide
SIMD instructions that enable computations on 4 (single precision) floats at a time.
Auto-vectorizing compilers serve the same purpose, however in the case of the Cell
processor, in our experience IBM’s xlf and gfortran were missing many opportunities
in the original code. Other transforms provide adaptation to a given data layout, e.g.,
array-of-struct vs struct-of-array vs array-of-struct-of-simd-vectors.

The Cell backend involves transforms that will subdivide the domain into smaller
workblocks which get load-balanced to the SPEs (synergistic processing elements).
SPEs stream through their assigned workblocks, loading and storing data by double-
buffered DMA. A related transform can be employed on conventional processors: block-
ing subdivides the domain into cache-friendly blocks, and then loops over the blocks,
which can provide significant performance gains (Kamil et al. 2006).

The transforms needed for efficient use of the Cell processor have been described
in more detail in Germaschewski et al. (2008). The SPEs can only directly access a
small amount of local memory (called “local store”), which is far too small to hold
3D MHD data. The main memory has to be accessed by explicit load and store DMA
instructions with high latency, though having a separate DMA engine means that mem-
ory transfers can be overlapped with computation. The 3D computation was therefore
replaced by streaming 2D slices in and out of local store concurrent with calculations.
The data layout of the multi-component fields is critical to maintaining good DMA
transfer rates and needed to be reorganized by the code generator to allow for fewer but
larger contiguous transfers that are essential to achieving good performance.

Contrary to the common perception that stencil computations always have low
computational intensity, an analysis of OpenGGCM shows 3.75 and 3.23 flops / byte
for predictor and corrector, respectively. Exploiting this fairly high intensity requires
reorganization of the code to avoid global temporary fields which was quite easily done
with the help of the code generator, but would be rather tedious otherwise. In the ex-
isting code, calculating a single predictor or corrector step in the legacy code involves
numerous loops over all grid points: For each fluid variable, one (nested 3D) loop calcu-
lates fluxes on cell centers at every grid cell. Then, a second loop takes the cell centered

4 K. Germaschewski and J. Raeder

i7 1-core i7 2-cores i7 4-cores i7 dual 4-cores Cell
0

100

200

300

400

500
ke

rn
e
l
e
x
e
cu

ti
o
n
 t

im
e
 /

 m
se

c

pred F77/gfortran
pred F77/ifort
pred gen/gcc
corr F77/gfortran
corr F77/ifort
corr gen/gcc

Figure 1. Performance for Open-
GGCM kernels on Intel i7 and IBM
PowerXCell 8i.

1 4 16 64 256 1024 4096 16384
number of cores

0.00

0.05

0.10

0.15

0.20

0.25

w
a
llt

im
e
 /

 t
im

e
st

e
p
 [

se
co

n
d
s]

 (
6
43

)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

w
a
llt

im
e
 /

 t
im

e
st

e
p
 [

se
co

n
d
s]

 (
3
23

)

64 x 64 x 64 cells per core

32 x 32 x 32 cells per core

ideal scaling

Figure 2. OpenGGCM weak
scaling on the Cray XT4 franklin.

fluxes and interpolates them to cell faces. Finally, a third loop adds up all fluxes into
each cell. This is repeated for all 5 fluid variables for terms written in divergence form,
then additional terms are added in once again separate loops. The introduction of global
temporary fields for the fluxes, etc., lowers the computational intensity substantially as
mosts loops now only has few floating point operations per iteration, leaving the perfor-
mance severely memory-bound. The code generator can substitute expressions which
were originally calculated in separate loops into a subsequent loop, in the extreme case
eliminating all loops but one. However, a disadvantage with this strategy is that quan-
tities will be recomputed across grid points – e. g., in the old code, a flux is calculated
once and then used to update both adjacent cells, while in the back-substituted code,
the same computation would be performed again at the loop iteration that updates the
second cell. To overcome this limitation, the code generator can “cache” field values by
storing them temporarily in designated memory areas. x being the fast index, fluxes on
the x-faces only need to be stored for one iteration, since the the next iteration handles
the cell adjacent to the other side of the face. For y-faces, one row of storage is required,
while for z-faces one plane is required. This method still stores temporaries and hence
avoids recomputations, but it only uses only a small fraction of the memory otherwise
used for 3D temporary fields, so that the temporaries can be kept in cache or the local
store on the Cell, respectively, without ever being transferred to main memory.

3. Performance results

Figure 1 presents timing results of the main computational kernels in OpenGGCM on
a single node. A series of four runs on an dual quadcore Intel Xeon E5520 (Nehalem)
machine running Fedora 12 was performed to investigate the performance implications
of running on modern multi-core machines. We show performance for the two main
kernels, a spatially low-order predictor (dark-colored) and a switched low/high-order
corrector (light-colored). The per-core problem size was kept constant at 128× 64× 64
grid cells. Each kernel is run in three variants: Legacy F77 code was compiled with
GNU gfortran 4.4.4, “-O3 -ffast-math”, and Intel ifort 12.0.0, “-O3”, enabling auto-
vectorization in both cases. The auto-generated code was compiled by gcc 4.4.4 with
“-O3 -ffast-math”. For PowerXCell 8i, results are only shown for the generated
code compiled with spu-gcc 4.1.1 with “-Os”; the Fortran code is extremely slow.

Automatic Code Generation in OpenGGCM 5

On a single Nehalem core, the generated predictor kernel is 2.34× and 1.64× faster
than the original code compiled with gfortran and ifort, respectively. The generated
code achieved 36.2% of peak floating point capacity, while the original code got 18.9%
using ifort. Measurements were performed using PAPI (Terpstra et al. 2009). The
actual performance gain is less than the improvement in floating point performance due
to the fact that some redundant calculations are performed in the generated code, which
gave overall better performance than storing and reloading intermediate values.

Going from a single core to a fully occupied dual-CPU node increases the perfor-
mance gain of the generated code over the original. The multi-core efficiency for the
generated core decreases from 100% (1 core) only to 75.4% (8 cores), while it decreases
to 54.4% (8 cores) in the case of the ifort code. This is explained by the fact that the
original code does have many more smaller loops and hence larger memory bandwidth
requirements, leading the increased contention of L3 cache and RAM accesses. As the
gfortran compiled code is slower to start with, contention is not as severe and 8-core
efficiency is at 69.5%. On a fully loaded node, the generated code is hence a substantial
2.28× faster than what the best compiler achieves for the original.

The results are not as good for the more complex corrector kernel, though the
generated code still provides performance improvement. Due to the wider stencils,
more distinct memory streams are needed, exceeding the capability of the Nehalem
hardware prefetcher, and attempts to overcome this using software prefetching did not
reveal a consistent solution. The optimized generated version hence fuses fewer loops
than in the predictor case in order to provide conditions where the hardware prefetcher
performs well. On a single core, performance gain is 2.41× and 1.33× over the gfortran
and ifort compiled original, respectively. Multicore efficiency on 8 cores is essentially
the same at 60.3 % (generated) and 59.5% (ifort). gfortran shows much better multicore
efficiency at 81.5%, but this is explained by the slow code and hence lower bandwidth
contention in the first place.

The performance of the legacy code on the PowerXCell 8i processor is extremely
slow, expressing a major disadvantage of heterogeneous architectures: Code not specif-
ically optimized performs very poorly. The auto-generated code, however, performs
quite well. Measurements of floating point performance show that we achieve up to
> 40% of peak for one of the kernels. Although the Cell processor is more than three
years older than the Intel i7, with properly tuned code it still beats the Intel processor by
a substantial margin. Further analysis shows the the performance gains of the generated
predictor kernel over the ifort compiled original can be attributed about equally to two
kinds of transformations: A little more than half of the gain is due to just rewriting the
loop bodies themselves while keeping the overall structure unchanged, while the re-
mainder of the gain is achieved by fusing loops, allowing for increased computational
intensity and additional opportunities for CSE.

While the code generator normally generates serial kernels for existing codes, it
can also generate MPI parallelized code by using a bundled domain decomposition
library; it was used in OpenGGCM to replaced the existing parallelization. Parallel
scalability was investigated on NERSC’s franklin machine, a Cray XT4 with 9,572
compute nodes. Each compute node is powered by a single quad-core AMD Opteron
CPU, so we used the auto-generated SSE2 kernels. We performed two sets of weak
scaling runs, one with a per-core spatial problem size of 64 × 64 × 64 cells and a
second one with 32 × 32 × 32 cells. The 643 case represents a more typical use case
for OpenGGCM, while the smaller local problem size allowed us to test scalability in a

6 K. Germaschewski and J. Raeder

if hall:

d i = Param("ggcmblock.d_i")

edge centered magnetic field

bz ec = b ec(y, z, bb[0], b, v)

by ec = b ec(z, y, bb[1], b, v)

edge centered current

jy ec = curr ec(y, z, b)

jz ec = curr ec(z, y, b)

subtract d i J x B

Ex −= d i ∗ (jy ec ∗ bz ec −

jz ec ∗ by ec)

Figure 3. Description of the Hall
term used as input for the code gen-
erator.

101 102 103

k

100

101

102

103

104

105

ω

ω=vA k

ω=divA k
2

shear-Alfven wave

Whistler wave

analytic dispersion relation

numerical dispersion relation

Figure 4. Shear-Alfvén–Whistler
dispersion relation for di = 0.01.

more extreme case: employing more cores for a given global problem size with the goal
of decreasing wall clock time for a given run, as might be crucial in a space weather
forecasting scenario where results need to be available much faster than real time.

Figure 2 shows our weak scaling results. We plot typical wallclock time used
per timestep. As the local problem size remains constant – the global domain size
increases in proportion to the number of cores used – ideal scaling is represented by the
flat line. We use the 4 core performance as the baseline since one compute node has
one quadcore processor. We rescaled the 323 case by multiplying it by a factor of 8 to
get an effective performance directly comparable to the 643 runs.

Parallel efficiency for the 643 problem run on 4096 cores is 89% – the scaling
study had to be stopped at that point due to unrelated problems in the code handling
even larger global grid sizes. As expected, the quite challenging 323 local problem size
does not scale as well, though still achieving respectable parallel efficiencies of 73% at
4096 cores and 69% at 16384 cores.

4. Hall-MHD

At small scales, the one-fluid MHD model is not a good approximation for the true
plasma behavior anymore. A first step in capturing more of the essential physics is
to extend MHD by taking two-fluid effects into account in a Generalized Ohm’s Law.
In particular, at scales below the ion inertial scale di, ion and electron fluids separate,
which can be taken into account by adding the Hall term −di(J × B) into Ohm’s Law.

Discretizing the Hall term is straightforward using our toolkit, shown in Figure 3.
We employ essentially the same method that OpenGGCM uses for the −v × B term in
Ohm’s Law, which requires quantities to be interpolated onto cell edges of the Yee grid.

Figure 4 shows verification results for our Hall-MHD model. The numerical pa-
rameters are chosen to reflect a typical 3D global simulation setup. We used 512 grid
points in the direction of wave propagation and an ion skin depth that is still reasonably
well resolved: The length of the domain is 1, and we use di = 0.01 ≈ 5∆x, where ∆x
is the grid spacing. The wave number k = 2πm is varied choosing m = 1, 2, 4, . . . , 128.
The plot shows that we capture the transition from the nondispersive shear-Alfvén wave
to the dispersive Whistler wave, as expected, at kdi ≈ 1. The circles show the analytic
values for the frequency as a function of wave number while the triangles represent the

Automatic Code Generation in OpenGGCM 7

numerical results. Analytic behavior is matched very well, noticable deviation occurs
only at the highest, coarsely resolved, wave numbers.

It is important to consider the computational cost of integrating the Hall-MHD
model. Due the dispersive waves, the CFL conditions becomes substantially more
stringent. However, the transition to a k2 dispersion relation only starts at di which
is a small scale only a few times larger than the grid scale, keeping the computational
requirements, while substantial, feasible. In this particular benchmark, the timestep had
to be decreased by a factor of 32 over the one-fluid MHD case. Considering that our
auto-generated code for the Cell processor let’s us run a well-resolved one-fluid case at
about real time on our local IBM Cell cluster, running three hours of actual time in the
Hall-MHD model will take about four days, which is certainly manageable.

5. Conclusions

We have presented code generation techniques that were used to adapt OpenGGCM
to the heterogeneous PowerXCell 8i processor and enhance performance on multi-core
processors, but apply more broadly to finite-difference based PDE solvers. Code gener-
ation offers a number of advantages: Only one code basis needs to be maintained, and
definition of the mathematical model is separated out, increasing programmer produc-
tivity, while at the same time enhancing performance substantially. The improvements
in OpenGGCM will enable Hall-MHD simulations at reasonable computational cost.

Acknowledgments. This research is supported by DOE grant DE-FG02-07ER46372
and NSF grants CNS-0855145 and OCI-0749125. Computational work has been per-
formed on DOE NERSC and NSF Teragrid systems.

References

Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes,
L. C., Smith, B. F., & Zhang, H. 2004, PETSc Users Manual, Tech. Rep. ANL-95/11 -
Revision 2.1.5, Argonne National Laboratory

Brodtkorb, A. R., Dyken, C., Hagen, T. R., Hjelmervik, J. M., & Storaasli, O. O. 2010, Scientific
Programming, 1

Christen, M., Schenk, O., & Burkhart, H. 2011, in 25th IEEE International Parallel & Dis-
tributed Processing Symposium (IPDPS 2011)

Crawford, C. H., Henning, P., Kistler, M., & Wright, C. 2008, in CF ’08: Proceedings of the
5th conference on Computing frontiers (New York, NY, USA: ACM), 3

Germaschewski, K., Raeder, J., Larson, D. J., & Bhattacharjee, A. 2008, in Numerical Modeling
of Space Plasma Flows: Astronum-2008, edited by N. Pogorelov, & G. Zank (ASP
Conference Series), vol. 406, 223–230

Kamil, S., Datta, K., Williams, S., Oliker, L., Shalf, J., & Yelick, K. 2006, in MSPC ’06:
Proceedings of the 2006 workshop on Memory system performance and correctness
(New York, NY, USA: ACM), 51

Raeder, J., Larson, D., Li, W., Kepko, E. L., & Fuller-Rowell, T. 2008, Space Sci. Rev., 141,
535

Terpstra, D., Jagode, H., You, H., & Dongarra, J. 2009, Tools for High Performance Computing,
pp. 157

Williams, S., Datta, K., Carter, J., Oliker, L., Shalf, J., Yelick, K., & Bailey, D. 2008, Journal
of Physics Conference Series, 125, 012038

