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[1] The physics of steady driven magnetic reconnection at Earth’s subsolar magnetopause
is addressed. Three-dimensional, global magnetohydrodynamics (MHD) simulations of
the magnetopause are compared with analytical solutions of the resistive MHD equations
[Sonnerup and Priest, 1975] corresponding to magnetic field annihilation driven by an
incompressible stagnation point flow. The simulations demonstrate that under steady
southward interplanetary magnetic field conditions and when the plasma resistivity is
spatially uniform, subsolar magnetopause reconnection occurs in long, thin Sweet-Parker
current sheets via a flux pileup mechanism [Sonnerup and Priest, 1975; Priest and
Forbes, 1986] (rather than in Petschek slow shock configurations). Magnetic energy piles
up upstream of the magnetopause current sheet to accommodate the sub-Alfvénic solar
wind inflow. The scaling of the pileup with Lundquist number, S, is consistent
(approximately / S1/4) with that predicted by the analytical, incompressible stagnation
point flow solutions (though there are small corrections due to plasma compressibility in
the simulations). Since there is a finite energy in the magnetosheath available to drive the
magnetic pileup (and associated rapid magnetic reconnection), we expect the pileup to
saturate and the reconnection rate to drop as the upstream plasma pressure drops to
accommodate the pileup. Thus we expect the reconnection to stall, the rate vanishing in
the limit S!1. We discuss the role of Hall electric fields in allowing the magnetic pileup
to saturate before the reconnection begins to stall, permitting Alfvénic reconnection to
occur in thin current sheets in the limit S ! 1. INDEX TERMS: 7835 Space Plasma Physics:

Magnetic reconnection; 7843 Space Plasma Physics: Numerical simulation studies; 7827 Space Plasma

Physics: Kinetic and MHD theory; 2724 Magnetospheric Physics: Magnetopause, cusp, and boundary layers;

2728 Magnetospheric Physics: Magnetosheath; KEYWORDS: magnetic reconnection, magnetopause, magnetic

flux pileup, global MHD simulation, GGCM

Citation: Dorelli, J. C., M. Hesse, M. M. Kuznetsova, L. Rastaetter, and J. Raeder (2004), A new look at driven magnetic

reconnection at the terrestrial subsolar magnetopause, J. Geophys. Res., 109, A12216, doi:10.1029/2004JA010458.

1. Introduction

[2] Over the last 40 years, prodigious observational
evidence has confirmed Dungey’s [Dungey, 1961] recon-
necting magnetosphere model. The existence of the polar
rain and wind, the plasmapause, and the auroral oval all
point directly to an open magnetosphere and thus indirectly
to magnetic reconnection (see the review by Kennel [1995]).
The ISEE spacecraft provided the first in situ evidence
[Paschmann et al., 1979] that something like Petschek’s
[Petschek, 1964] mechanism, i.e., plasma being accelerated
to Alfvénic velocities by the ‘‘magnetic slingshot’’ pro-
duced by the component of the magnetic field (Bn) normal
to the magnetopause surface, is operating at the dayside

magnetopause. Since then, observations of the expected
signatures of particle acceleration across rotational disconti-
nuities have been interpreted as direct evidence for magnetic
reconnection at the dayside magnetopause [Cowley, 1980;
Cowley, 1982; Gosling et al., 1990; Sonnerup, 1995;
Paschmann, 1997; Onsager and Lockwood, 1997]. More
recently, spacecraft instruments with higher spatial and
temporal resolutions than those aboard the ISEE spacecraft
have detected kinetic signatures (e.g., Hall electric fields
and nongyrotropic electron velocity distributions) of colli-
sionless reconnection at the magnetopause [Mozer et al.,
2002; Scudder et al., 2002; Mozer et al., 2003] and in the
plasma sheet [Oieroset et al., 2001].
[3] Unfortunately, owing to the computational challenges

involved in accurately modeling processes occurring on
disparate spatial and temporal scales in collisionless astro-
physical plasmas, theoretical developments have been gen-
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erally confined to spatially localized regions with idealized
geometries. For example, particle-in-cell (PIC) models of
the magnetopause are generally confined to one and two
spatial dimensions (see, for example, Omidi and Winske
[1995] and Lin [2001]), and three-dimensional PIC simu-
lations (see, for example, Drake et al. [2003]) are confined
to spatial domains which cover only several ion inertial
lengths. Resistive magnetohydrodynamics (MHD) is still
the preferred approach to three-dimensional, global model-
ing of the magnetosphere; nevertheless, resistive MHD
suffers from well-known deficiencies, particularly with
respect to its ability to model magnetic reconnection in
the low plasma resistivity limit. It is now clear (see, for
example, Biskamp [1986] and Biskamp and Schwarz
[2001]) that Petschek’s reconnection mechanism is only
relevant when the plasma resistivity is spatially localized
in such a way that the spatial scale of the current layer is
proportional to the magnitude of the resistivity (as assumed
in Petschek’s model). Without such spatial localization (e.g.,
if the plasma resistivity is spatially uniform), reconnection is
typically observed to occur in long, thin Sweet-Parker
current sheets [Sweet, 1958; Parker, 1957]. There are
interesting questions surrounding the breakdown of the
Petschek model in the constant resistivity case; for example,
while Biskamp has argued that flux pileup reconnection is
relevant whenever the driving inflow exceeds the Sweet-
Parker velocity [Biskamp, 1986], Strachan and Priest
[1994] have obtained new ‘‘hybrid solutions’’ (exhibiting
properties of both flux pileup and slow mode compression
reconnection solutions) which, they argue, explain the
‘‘Sweet-Parker’’ scaling observed in Biskamp’s numerical
experiments. (Note that in what follows, we will refer to a
reconnection time which scales like the square root of the
Lundquist number as a ‘‘Sweet-Parker’’ scaling; the reader
should keep in mind, however, that the existence of a long,
thin ‘‘Sweet-Parker’’ current sheet does not in itself imply
that the reconnection time scales like S1/2). Unfortunately,
the Sweet-Parker reconnection time scales like the square
root of the Lundquist number, S (S = 4pVAl/(c

2h), where VA
is the Alfvén speed, l is a length scale characterizing the
system, c is the speed of light, and h is the plasma
resistivity). This poses a significant problem for modelers
attempting to explain the transfer of energy from the solar
wind plasma to the magnetospheric plasma via magnetic
reconnection, since both plasmas are essentially collision-
less (i.e., S ! 1).
[4] A more serious problem with the flux pileup mech-

anism is its prediction that the current sheet thickness scales
like S�1/2; thus resistive MHD itself breaks down as the
sheet thickness approaches kinetic scales (e.g., particle
Larmor radii), and a description in terms of the Vlasov
equation is more appropriate. Again, owing to limited
computational resources, electromagnetic PIC simulations
of collisionless magnetic reconnection have largely focused
on limited spatial and temporal domains (typically several
ion inertial lengths in extent), using rather idealized equi-
librium initial conditions to study various current driven
plasma instabilities [Horiuchi et al., 2001; Hesse et al.,
2001b; Lapenta et al., 2003; Li et al., 2003; Daughton,
2003]. Much larger three-dimensional ‘‘mesoscale’’ simu-
lations, with system sizes of �100 di (where di is the ion
inertial length), are possible using two-fluid codes [Shay et

al., 2003] but important kinetic effects which allow mag-
netic reconnection to occur, such as finite Larmor radius
effects [Hesse et al., 1999; Kuznetsova et al., 2001] and
anomalous resistivity associated with microturbulence
[Drake et al., 2003] are neglected in such calculations.
While there is some evidence from simulations that ion
inertial effects, in particular Hall electric fields, permit
magnetic reconnection to occur at a rate which is insensitive
to the electron dissipation mechanism [Mandt et al., 1994;
Biskamp et al., 1995; Ma and Bhattacharjee, 1996; Shay
and Drake, 1998; Shay et al., 1999; Hesse et al., 1999;
Kuznetsova et al., 2001; Birn and Hesse, 2001] the scaling
of these results with ‘‘system size’’ (i.e, with di/l) is
controversial [Wang et al., 2001; Dorelli and Birn, 2003;
Fitzpatrick, 2003].
[5] In this paper we revisit the Sweet-Parker timescale

problem in the context of steady, driven magnetic recon-
nection at the terrestrial subsolar magnetopause. We use
global MHD simulations to demonstrate that if the plasma
resistivity is spatially uniform, magnetic reconnection
occurs in thin current sheets at a rate which is consistent
with that predicted by analytical models of driven magnetic
field annihilation (see, for example, Sonnerup and Priest
[1975], Watson and Craig [1997], Fabling and Craig
[1996], and Craig et al. [1997]). An important consequence
of these scalings is that the reconnection rate approaches
zero as the Lundquist number approaches infinity. Thus not
unexpectedly, resistive MHD models with spatially uniform
plasma resistivity are incapable of reproducing Dungey’s
reconnecting magnetosphere in the high Lundquist number
limit. While recent theory [Dorelli and Birn, 2003; Dorelli,
2003] predicts that Hall electric fields can allow magnetic
pileup to saturate before the reconnection stalls (i.e., before
the reconnection rate begins to scale strongly with plasma
resistivity), one expects a significant degree of pileup to
occur under steady southward IMF conditions before the
current sheet thickness approaches the ion inertial scale.
This result is puzzling, given the fact that such magnetic
pileup is rarely observed in the magnetosheath under
southward IMF conditions [Anderson et al., 1997]. We
discuss several possible resolutions to this problem in the
final section of this paper.

2. Driven Magnetic Field Annihilation

[6] In the context of solar-terrestrial physics, much of the
research in reconnection physics is still motivated by the
following, largely inaccurate view of two-dimensional re-
connection theory: (1) the Sweet-Parker magnetic recon-
nection model cannot explain the ‘‘fast’’ (i.e., Alfvénic)
timescales observed in such astrophysical dissipative events
as solar flares and magnetospheric substorms; (2) the
Petschek slow shock model solves the Sweet-Parker time-
scale problem, allowing magnetic energy dissipation to
occur on Alfvénic timescales even as the Lundquist number,
S (S = 4plVA/(hc

2), where l is a system scale length, VA is
the Alfvén speed, h is the plasma resistivity, and c is the
speed of light), approaches a realistic value (e.g., S � 1013

in the solar corona). Parker himself [Parker, 1973] under-
mined 1 by showing how magnetic flux pileup can permit
driven reconnection to occur at a rate which is independent
of the Lundquist number. Biskamp’s numerical experiments
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[Biskamp, 1986; Biskamp, 1993] undermined 2 by showing
that flux pileup reconnection (and not Petschek’s slow
shock configuration) seems to occur whenever the plasma
resistivity is spatially uniform and the inflow exceeds the
Sweet-Parker inflow speed (which scales like S�1/2). In this
work we present evidence that in the context of resistive
MHD with constant plasma resistivity, magnetic reconnec-
tion at the terrestrial subsolar magnetopause occurs via the
flux pileup mechanism, with magnetic energy being con-
verted into plasma energy in thin current sheets of macro-
scopic length. Specifically, the bridge between the
numerical experiments and the Parker [1973] solution is
provided by Sonnerup and Priest [1975], who specialized
Parker’s solution to the case of unidirectional magnetic field
line annihilation. Despite the simplification in magnetic
field geometry, the Sonnerup and Priest solutions accom-
modated three dimensional flow fields, making them rele-
vant to real astrophysical stagnation flows.
[7] While the Sonnerup and Priest annihilation solutions

do not technically describe a reconnection process (since the
current sheet is infinite and the magnetic field component
normal to the sheet vanishes), we argue that the three-
dimensional character of the stagnation point flow at the
subsolar magnetopause makes the annihilation solutions
more relevant to subsolar reconnection than the two-
dimensional flux pileup reconnection solutions obtained
by Priest and Forbes [1986]. For example, while the flux
pileup solutions of Priest and Forbes [1986] are superior
to the annihilation solutions, describing current sheets of
finite length, they do not take into account the flow around
the flanks of the magnetopause. This flow around the
flanks of the magnetopause (which is included in the
three-dimensional stagnation point flow solutions) signifi-
cantly weakens the dependence of the magnetic flux pileup
on the Lundquist number. Further, the magnitude of the
magnetic field component normal to the current sheet is
observed, in the simulations, to be much smaller than the
magnitude of the reconnecting magnetic field just up-
stream of the sheet; thus away from the edges of the
current sheet, the conversion of magnetic energy into
plasma energy can be approximated as a driven annihila-
tion process. As we demonstrate below, the Sonnerup and
Priest solution makes a surprisingly accurate prediction of the
scaling of the magnetic flux pileup with Lundquist number.
[8] Consider the steady state, incompressible MHD

equations:

U � rð ÞW� W � rð ÞU ¼ B � rð ÞJ� J � rð ÞB ð1Þ

U � rð ÞB� B � rð ÞU ¼ 1

S
r2B; ð2Þ

where U is the bulk velocity, W is the vorticity (W =r � U),
B is the magnetic field, J is the current density, and S is the
Lundquist number. In the above equations (and in those
which follow), all variables are dimensionless. Length
scales are normalized by a characteristic system scale, l; the
magnetic field and the mass density are normalized by
reference values, B0 and r0, respectively; the bulk velocity is
normalized by the reference Alfvén speed, VA = B0/

ffiffiffiffiffiffiffiffiffiffi
4pr0

p
;

the plasma pressure, p, is normalized by the magnetic
energy density, B0

2/(8p); and the current density, J, is

normalized so that r � B = J). Following Sonnerup and
Priest [1975] and Watson and Craig [1997], we consider
solutions with the form:

Ux ¼ �U0x ð3Þ

Uy ¼ U0y 1� kð Þ ð4Þ

Uz ¼ U0zk ð5Þ

Bx ¼ 0 ð6Þ

By ¼ 0 ð7Þ

Bz ¼ f xð Þ; ð8Þ

where U0 is a constant which determines the strength of the
driving flow, k is a parameter controlling the anisotropy of
the flow in the y–z plane (see Figures 4 and 5), and f(x)
gives the z component of the magnetic field as a function of
x (i.e., normal to the one-dimensional current sheet).
[9] Figure 1 illustrates the three-dimensional stagnation

flow annihilation solution of Sonnerup and Priest [1975].
The blue lines represent the magnetic field, which is being
convected (the velocity field is represented by green arrows)
toward a one-dimensional current sheet in the y–z plane at
x = 0. The magnitude of the z component of the magnetic
field, f(x), satisfies the following equation:

1

S

d2f

dx2
þ U0x

df

dx
þ U0kf ¼ 0: ð9Þ

Anderson and Priest [1993] integrate equation (9) for the
case k = 0, noting that the general solution can be written in
terms of the Kummer function, M(a, b, x):

f xð Þ ¼ c0Sx exp �SU0

x2

2

� �
M

1

2
;
3

2
; SU0

x2

2

� �
þ c1 exp �SU0

x2

2

� �
;

ð10Þ

where c0 and c1 are arbitrary constants. For arbitrary k,
Craig et al. [1997] note that the general solution of equation
(9) can be written as follows:

f xð Þ ¼ C1x SU0ð Þ1=2M kþ 2

2
;
3

2
;�SU0

x2

2

� �
þ C2M

k
2
;
1

2
;�SU0

x2

2

� �
:

ð11Þ

For the case C2 = 0 (i.e., the magnetic field vanishes at the
stagnation point), one obtains pileup scaling laws from
equation (11). If we fix the magnetic field magnitude, jBj =
1, at x = 1, then f(x) peaks at x � ‘ � S1/2 and scales like
ASk/2x�k for large x. For example, Figure 2 shows the z
component of the magnetic field, f(x) for various values of
S, with the flow anisotropy fixed. From equation (11), the
local maximum of the magnetic field magnitude, Bmax �
Bup, scales like Sk/2. Thus if the outflow is parallel to the
magnetic field (i.e., k = 1), then Bup / S1/2. The pileup is
most severe in this case, since the outflow does not transport
magnetic flux away from the stagnation point. Further, the
S1/2 scaling of Bup compensates for the Uin / S�1/2 scaling
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of the inflow (Uin is the magnitude of Ux at the location, ‘,
of the local maximum of Bz) so that the annihilation rate,
BupUin, is independent of the Lundquist number.
[10] In contrast, when k = 0 (i.e., the outflow is perpen-

dicular to the magnetic field), there is no magnetic flux
pileup for any value of S. In this case, the annihilation rate,
BupUin, scales like S

�1/2. When the flow is axisymmetric (k =
1/2), then Bup / S1/4, and the annihilation rate scales like
S�1/4. Figure 3 shows the z component of the magnetic field
for various values of k, with the Lundquist number fixed.
[11] Figures 4 and 5 show the stagnation flow annihila-

tion solutions for the two limiting cases: (1) k = 1 (outflow
parallel to the magnetic field) and (2) k = 0 (outflow
perpendicular to the magnetic field.) In the context of driven
magnetic reconnection at the subsolar terrestrial magneto-
pause, the case k = 0 would correspond to the situation
where most of the magnetosheath inflow is diverted around
the flanks of the magnetopause, while the case k = 1 might
be relevant in the situation where strong reconnection
outflow diverts most of the magnetosheath inflow parallel
to the magnetic field. In this work, we show that the actual
situation in global MHD simulations, when the IMF is
southward and thus favorable for magnetic reconnection at
the subsolar point, is a combination of the two cases: (1) at
the stagnation point, the flow is approximately axisymmet-
ric (though there is a slight preference for the outflow to be
around the flanks) and (2) at the northward and southward

‘‘edges’’ of the current sheet, where component of the
magnetic field normal to the sheet is significant, the outflow
is predominantly parallel to the magnetic field (as expected
for an outflow driven by subsolar magnetic reconnection).

Figure 1. The three-dimensional annihilation solution of Sonnerup and Priest [1975]. Blue lines are
magnetic field lines; green arrows show the bulk velocity vector field. The case shown here corresponds
to k = 0.5 (i.e., axisymmetric flow).

Figure 2. Magnetic energy pileup as a function of
Lundquist number, S, for fixed flow anisotropy, k = 0.38.
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Nevertheless, the degree of magnetic energy pileup along
the Sun-Earth line is determined by the flow anisotropy
upstream of the stagnation point not by the downstream
reconnection-driven flow anisotropy.
[12] The k = 1 stagnation point flow solution has been

used to argue (see, for example, Craig and Watson [1999])

that Alfvénic reconnection is possible in thin current sheets
even for astrophysically relevant Lundquist numbers (e.g.,
S � 1013 in the solar corona). The essential idea is that
although the speed at which magnetic flux is transported
into the current sheet is inversely related to S, the magnetic
flux just upstream of the current sheet is directly related to
S. Thus magnetic flux pileup can compensate, to some
extent, for the decrease in the inflow velocity with
increasing S. For the case k = 1, the pileup renders the
reconnection rate independent of S, since Uin / S�1/2 and
Bup / S1/2. For the axisymmetric case, k = 1/2, Bup / S1/4,
implying that the annihilation rate decreases like S�1/4

(which is significantly weaker than the Sweet-Parker
scaling of S�1/2).
[13] Unfortunately, as first recognized by Priest [1996],

momentum conservation prevents the magnetic flux pileup
from increasing indefinitely with increasing S. The three-
dimensional stagnation point flow solutions of Sonnerup
and Priest [1975] satisfy the following pressure balance
condition (again, all variables are dimensionless):

p ¼ b� B2 � rU2; ð12Þ

where b is the external plasma beta (the internal plasma
energy density available to drive the magnetic field
annihilation). Thus the external plasma beta sets an upper
limit on the degree of magnetic energy pileup just upstream
of the current sheet. Litvinenko [1999] computes an upper
limit to the annihilation rate, Ey

max, based on the condition

Figure 4. Three-dimensional annihilation solution for the case k = 0.

Figure 3. Magnetic energy pileup as a function of flow
anisotropy, k, for fixed Lundquist number, S.
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that the minimum pressure (consistent with the local
maximum of the magnetic field) be positive. It turns out
that Ey

max / S�1/2 so that the Sweet-Parker scaling reappears
as an upper limit to the annihilation rate.
[14] In light of the discussion above, several questions

arise when one addresses the problem of magnetic recon-
nection at the terrestrial subsolar magnetopause: When the
plasma resistivity is constant in time and spatially uniform,
does reconnection occur in macroscopic, thin current sheets,
or is Petschek’s slow shock mechanism relevant? If mag-
netic flux pileup reconnection is relevant, how do the
magnetic energy pileup and reconnection electric field scale
with plasma resistivity? What are the effects of Hall electric
fields on the scaling of the reconnection rate with Lundquist
number? We address the first two questions using global
MHD simulations, demonstrating that flux pileup reconnec-
tion, and not Petschek’s configuration, is relevant in the
context of the terrestrial magnetopause when the plasma
resistivity is spatially uniform. The third question is
addressed using a Hall MHD generalization of the Sonnerup
and Priest [1975] annihilation solution for the case k = 1
(the case k � 1/2 is more relevant for the three-dimensional
(3-D) magnetopause, but it is not yet clear to us how to
generalize that solution to include the effects of Hall electric
fields. While Sonnerup and Priest [1975] point out that their
solution can be extended to the case where the Hall term
and the electron pressure gradient are included in Ohm’s
law, their solution does not model the quadrupolar ‘‘out-of-
plane’’ magnetic field [Mandt et al., 1994] which plays an

important role in driving the reconnection process in whis-
tler-mediated magnetic reconnection).

3. Global MHD Simulations

[15] The results presented in this paper were obtained
using a version of the GGCM (Geospace General Circula-
tion Model) code (developed by J. Raeder at University of
California, Los Angeles) which is maintained at the Com-
munity Coordinated Modeling Center (CCMC) at the God-
dard Space Flight Center. Details of the numerical methods
are given elsewhere (see, for example,Raeder [1999]), but we
will summarize the methods here. The code is parallelized,
using the Message Passing Interface (MPI), to run on the
Beowulf clusters at the CCMC.
[16] In the outer magnetosphere (outside a sphere of

radius 3.5 RE centered around Earth), the resistive MHD
equations are solved using explicit finite difference schemes
(to be described below):

@r
@t

¼ �r � rUð Þ ð13Þ

@rU
@t

¼ �r � � rUUþ pIð Þ þ J� B ð14Þ

@u

@t
¼ �r � uþ pð ÞU½ � þ J � E ð15Þ

Figure 5. Three-dimensional annihilation solution for the case kappa = 1.
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@B

@t
¼ �r� E ð16Þ

r � B ¼ 0 ð17Þ

E ¼ �U� Bþ 1

S
J ð18Þ

r � B ¼ J ð19Þ

u ¼ 1

2
rU 2 þ p

g� 1
; ð20Þ

where I is the unit tensor, u is the plasma energy density,
E is the electric field, and g is the ratio of specific heats
(g = 5/3 in this study). The variables are dimensionless,
having been normalized as follows: spatial coordinates are
normalized by 1 RE; r is normalized by a reference value,
r0 = 104 cm�3; the magnetic field, B, is normalized by the
magnitude of Earth’s dipole field at 1 RE; U is normalized
by the reference Alfvén speed, VA = B0/(4pr0)

1/2; u is
normalized by the reference magnetic energy density, B0

2/
(8p); t is normalized by the Alfvén time, tA = l/VA (where
l = 1 RE); the current density, J, and the electric field, E,
are normalized so that equations (18) and (19) are
satisfied. The Lundquist number, S, is constant in time
and spatially uniform (save for a spherical region of radius
6 RE around Earth, where the resistivity is set to zero). The
reader should note that S is defined here in terms of the
reference magnetic field at 1 RE, which is significantly
higher than that in the magnetosheath. Thus we will
distinguish between S and SMS (the magnetosheath
Lundquist number) when we discuss the magnetopause
scaling results in the next section.
[17] Equations (13)–(20) are solved on a nonuniform

rectangular mesh in GSE coordinates. In the y and z
dimensions, the grid is exponential, extending out to
±48 RE, with a minimum grid spacing of 0.15 RE at y = z =
0. The magnetopause current sheet extends typically to a
couple of Earth radii around the Sun-Earth line; the grid
spacing at the ‘‘edges’’ of the current sheet is �0.3 RE. In
the x direction, the grid extends from 24 RE on the dayside
to �200 RE in the tail; the grid is again nonuniform, with
the resolution concentrated around the dayside magneto-
pause (several Earth radii around 8.5 RE), where the
resolution is �0.025 RE. We have performed convergence
tests to verify that the results we present in the following
section are not sensitive to the grid resolution; nevertheless,
we have determined that there is a measurable numerical
resistivity in the highest Lundquist number run considered
in this study (S = 10,000).
[18] As discussed by Raeder [1999], the gasdynamic part

of the MHD equations, equations (13)–(15), are spatially
discretized using a hybrid scheme in which fourth-order
fluxes are combined with first-order Rusanov fluxes
[Harten and Zwas, 1972] (with the Rusanov fluxes domi-
nating in shock regions and the high-order fluxes dominat-
ing in smooth regions), while Faraday’s law, equation (16),
is discretized using the constrained transport method devel-
oped by Evans and Hawley [1988] (this method maintains
r � B = 0 to within round-off error). All of the equations are
advanced in time using a second-order predictor-corrector
scheme. The boundary conditions on the dayside are fixed

in time, while those on the other five boundaries are free
(i.e., normal derivatives vanish).
[19] Field-aligned currents (FAC), Jk, are computed just

outside a spherical region of radius 3.5 RE, centered around
Earth, and mapped to a spherical-polar ionospheric grid at 1
RE using a dipole magnetic field model. The mapped FAC
are used to compute the source term in the current
continuity equation:

r �2 � rF ¼ �Jk sin I ; ð21Þ

where F is the ionospheric potential on a spherical grid at
1 AU, 2 is a conductivity tensor, and I is the inclination
of the dipole field at the ionosphere. Equation (21) is
solved using a Galerkin pseudospectral method on a
spherical-polar grid, with the boundary condition F = 0 at
the equator. The ionospheric conductivities include
contributions from EUV ionization, diffuse auroral electron
precipitation, and discrete aurorae associated with parallel
electric fields (see Raeder et al. [2001] for details).
[20] In all of the runs described in this paper, the dipole

tilt is set to zero and the following steady solar wind
boundary conditions are imposed: the IMF is southward,
with a magnitude of 5 nT; the solar wind speed is 400 km/s;
the solar wind density is 5 cm�3; the solar wind pressure is
7 pPa. We run the code long enough for a steady state to be
reached on the dayside (typically this requires approximately
2 hours of simulated time). We present five runs,
corresponding to the following set of Lundquist numbers:
S = {500, 1000, 2000, 5000, 10,000}.

4. Results

[21] Figure 6 shows the magnetic field lines (red and
blue lines) and bulk velocity field (green arrows) near the
subsolar magnetopause for the case S = 10,000. The blue
lines correspond to field lines for which the z component
is negative (Bz < 0), and the red lines correspond to field
lines for which Bz > 0. Comparing the figure with the
axisymmetric stagnation flow solution (Figure 1), there
are several immediately apparent differences: (1) The
magnetic field lines are slightly draped around a curved
magnetopause boundary; the solar wind appears to flow
across a magnetic ‘‘hole’’ where the magnitude of the
magnetic field is depressed (i.e., the flow does not appear
to vanish at the magnetic null point); (2) The magnetic
field has a component normal to the current sheet; the
normal component is associated with magnetic reconnec-
tion, which is not present in the annihilation solution of
Figure 1; (3) The outflow appears, at first glance, to be
highly anisotropic, with the flow being predominantly
parallel to the magnetic field downstream of the stagna-
tion point (corresponding more closely to the k = 1 case
illustrated in Figure 5 than to the case illustrated in
Figure 4); nevertheless, the bulk velocity field upstream
of the stagnation point appears to be nearly axisymmetric.
[22] Figure 7 shows a slice of the current density in the

noon-midnight meridional plane for the case S = 10,000.
The Alfvén Mach number and plasma beta upstream of the
current sheet (at �10 RE) are �0.4 and 5, respectively.
Qualitatively, the structure of the current layer, in particular,
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the large aspect ratio of the sheet, appears to be more
consistent with the flux pileup theory [Sonnerup and Priest,
1975; Priest and Forbes, 1986] than with the Petschek
theory. In particular, the length scale (in the z direction) of
the sheet is macroscopic (being several Earth radii in length)
while the thickness along the Sun-Earth line is about a tenth
of an Earth radius. Further, we see no indication that the
current sheet has disintegrated into a system of MHD
discontinities (slow mode shocks, rotational discontinuities,
and contact discontinuities), as predicted by Petschek-like
theories where the dissipation is localized to a microscopic
region around the stagnation point [Heyn et al., 1988; Heyn
and Semenov, 1996; Semenov et al., 1998].
[23] Compare Figures 6 and 7, corresponding to the case

S = 10,000, with Figures 8 and 9, corresponding to the case
S = 5000. Again, magnetic dissipation appears to occur in a
long, thin, Sweet-Parker like current sheet, with the outflow
downstream of the stagnation point directed nearly parallel
to the magnetic field. The aspect ratio of the current sheet is
larger for the S = 10,000 case. Further, Figures 10 and 11
show that the magnetic flux pileup is more severe for the
S = 10,000 case.
[24] It is interesting to note that the magnetic flux pileup

in the S = 10,000 case is associated with a decrease in
plasma pressure (about a 20% decrease) just upstream of the
magnetopause current layer. This pressure decrease is a
consequence of steady state pressure balance, as predicted

by the Sonnerup and Priest [1975] annihilation solution.
Figure 12 shows the plasma density in the noon-midnight
meridion plane; it appears that the decrease in pressure
upstream of the magnetopause is associated with a decrease
in plasma density. While one might be tempted to identify
this density decrease with the ‘‘plasma depletion layer’’
(PDL) often observed by spacecraft traversing the magne-
topause under northward IMF conditions [Crooker et al.,
1979; Song et al., 1992; Anderson et al., 1997], and our
results are indeed consistent with previous MHD simula-
tions of the PDL [Wu, 1992; Wang et al., 2003], Song and
Russell [2002] point out that PDL layers observed by
spacecraft typically involve larger decreases in plasma
density (greater than 50%). We suggest that the density
depletion observed in the simulations is a consequence of an
adiabatic slow mode expansion associated with the pileup of
magnetic flux upstream of the magnetopause current sheet
(as argued by Priest and Forbes [1986]). In contrast, a
Petschek reconnection configuration would be associated
with a slow mode compression (and a corresponding
decrease in the magnitude of the magnetic field just up-
stream of the magnetopause current layer). Thus the plasma
depletion observed in the simulations is a consequence of
pressure balance at the stagnation point in the presence of
magnetic energy pileup. In other words, as the magnetic
energy upstream of the current sheet increases, the plasma
pressure decreases. We have confirmed that the plasma

Figure 6. Three-dimensional view of the subsolar magnetopause for the case S = 10,000.
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Figure 8. Three-dimensional view of the subsolar magnetopause for the case S = 5000.

Figure 7. Current density in the noon-midnight meridional plane for the case S = 10,000. The bulk
velocity field is shown with yellow arrows.
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pressure in the magnetosheath (outside the current layer) is
proportional to r5/3. Since the plasma pressure must remain
positive, the maximum possible amount of magnetic pileup
must be bounded by the external plasma pressure available
to drive the stagnation point flow. Thus as argued by Priest
[1996] and Litvinenko [1999], the plasma pressure imposes a
severe upper limit on the pileup reconnection rate which
scales like S�1/2. For the numerical experiments presented in
this paper, the decrease in the upstream plasma pressure is
small enough that we are not in the saturation regime.
[25] The three-dimensional stagnation point flow solution

theory described in section 2 makes two simplifying
assumptions which, it turns out, are not strictly valid in
the global MHD simulations: (1) the plasma is incompress-
ible and (2) the flow anisotropy, measured by the k
parameter in equations (4) and (5), is constant. Figure 13
shows the spatial variation of k along the Sun-Earth line.
The flow anisotropy, k, was determined by computing the
derivatives, @Uy/@y and @Uz/@z, along the Sun-Earth line (it
turns out that Uy and Uz are well approximated by linear
functions of y and z, respectively, for some distance away
from the Sun-Earth line). In the magnetosheath (X ^ 8.7 RE),
k is approximately constant, in the range 0.4 ] k ] 0.45
(though for the S = 10,000 case, shown by the black curve,
the flow anisotropy exhibits oscillatory behavior in the
sheath; we have not yet investigated this interesting feature
of the magnetosheath flow field geometry). As the flow
crosses the current sheet (X � 8.7 RE), there is a rapid
increase in the flow anisotropy. This increase in k is a
consequence of magnetic reconnection, which accelerates
the plasma in the north-south direction at the edges of the
current sheet. In previous numerical studies of flux pileup
reconnection, Dorelli and Birn [2003] argued that away
from the center of the current sheet, the magnetic pressure
gradient along the sheet plays the dominant role in the

acceleration process; along the center of the sheet, however,
the plasma pressure gradient plays the dominant role. Thus
plasma is squeezed out the ends of the sheet by the pressure
gradient (magnetic and plasma) along the current sheet.

Figure 9. Current density in the noon-midnight meridional plane for the case S = 5000.

Figure 10. Magnetic flux pileup and associated plasma
depletion along the Sun-Earth line for the case S = 10,000.
The red line shows the plasma pressure; the green line
shows the x component of the bulk velocity; the blue line
shows the z component of the magnetic field.
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Priest and Forbes [2000], on the other hand, point out that
owing to the macroscopic length of the Sweet-Parker
current sheet, the contribution to the J � B force of the
component of the magnetic field normal to the current sheet
cannot be neglected; thus one expects the outflow speed to
be slightly greater than the upstream Alfvén speed, with
both plasma pressure gradients and the magnetic tension
force contributing to the plasma acceleration along the
center of the sheet. A detailed analysis of the relative
importance of the plasma pressure gradient and the J � B
force along the simulated current sheets remains to be done.
[26] Interestingly, for the cases S = 2000 and S = 5000,

there is a decrease in the flow anisotropy just upstream of
the current sheet. The effect is most pronounced for the S =
5000 case and less obvious for S = 2000, and the effect is
not observed in the S = 10,000 case. We are presently
investigating the physical reasons for this decrease in the
flow anisotropy; here, we tentatively suggest that as the
plasma resistivity is decreased, reconnection in the thin
current sheet is less efficient at accelerating magnetic flux
downstream of the magnetic null or diffusing magnetic
energy at the null. Thus more flux must be diverted around
the flanks of the magnetopause, resulting in a decrease in
the k parameter. While this hypothesis seems intuitive, it
does not explain why the increased flow around the flanks is
not seen in the S = 10,000 case.
[27] Figure 14 compares the degree of magnetic pileup

observed in the global MHD simulation with that expected
from Faraday’s law:

U � rB� B � rUþ B r � Uð Þ � 1

S
r2B ¼ 0: ð22Þ

The solid lines in Figure 14 show the z component of the
magnetic field, Bz, along the Sun-Earth line computed by

the global MHD simulation. The dashed lines show Bz

computed from the z component of equation (22) along the
Sun-Earth line:

Ux

@Bz

@x
� C xð ÞBz �

1

S

@2Bz

@x2
¼ 0 ð23Þ

where C(x) � [@Uz/@z�r � U]y=0,z=0. Ux(x)jy=0,z=0 and C(x)
C(x) are obtained from the simulations. Since U(x)
decreases linearly (to a good approximation) from the
magnetosheath to the stagnation point along the Sun-Earth
line and since the flow anisotropy is nearly constant in the
sheath (see Figure 13), one might expect the degree of
magnetic pileup observed in the simulations to agree quite
well with that predicted by the theory of Sonnerup and
Priest [1975]. Nevertheless, we have found that it is
necessary to take into account plasma compressibility (the
second term on the right-hand side of the definition of C(x))
in order to achieve the level of agreement demonstrated in
Figure 14. The compressibility effect is negligible for the
three lowest Lundquist number runs (S = 500, 1000, 2000),
but it appears to be significant for the S = 5000 and S =
10,000 cases. For the S = 10,000 case, however, equation
(23) systematically overestimates the degree of pileup when
compared with the simulation results (compare the solid and
dashed black lines in Figure 14). We have confirmed that
this systematic error is caused by numerical diffusion,
which implies that the ‘‘effective’’ Lundquist number for the
S = 10,000 case is only slightly greater than 5000 (and
spatially localized around the current sheet). This level of
numerical resistivity is consistent with that observed in a
previous study [Raeder, 1999].
[28] The effects of plasma compressibility and numerical

resistivity on the Sonnerup and Priest [1975] solution can
be seen clearly in Figure 15. The solid red line gives the
prediction of the incompressible, constant k theory of
Sonnerup and Priest [1975] (where kappa = 0.4). The green

Figure 11. Magnetic flux pileup and associated plasma
depletion along the Sun-Earth line for the case S = 5000.

Figure 12. Density depletion upstream of the magneto-
pause for the case S = 10,000.
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squares show the simulation results. Consistent with
Figure 14, the Sonnerup and Priest [1975] scaling
(Bup / S0.2) is obeyed for the lowest three Lundquist
number cases. For the S = 5000 case, plasma compressibility
results in less magnetic pileup than would be expected in the

absence of incompressibility (numerical resistivity is
insignificant for this case, as shown in Figure 14). It is
difficult to separate the effect of plasma compressibility
from numerical resistivity for the S = 10,000 case. Exactly
why the plasma compressibility becomes more important at
high Lundquist numbers, and why it has the effect of
reducing the amount of magnetic pileup compared with that
which would be expected in an incompressible plasma, is an
interesting question which we must leave for the future.
[29] Figure 16 shows the y component of the electric field

at local maximum of the magnetic field, Ey = �UinBup, as a
function of the Lundquist number. The solid red line shows
the prediction of the incompressible Sonnerup and Priest
[1975] theory with k = 0.4 (i.e., the slope of the red line is
k/2 = 0.2). The green squares show the results of the global
MHD simulations. Although the scaling observed in the
simulation appears to be consistent with that predicted by
the Sonnerup and Priest [1975] theory, one would expect to
observe a change in scaling for the highest two Lundquist
number cases (S = 5000 and S = 10,000) due to compress-
ibility and numerical resistivity effects (as discussed above
and illustrated clearly in Figure 15). Nevertheless, it seems
as though the slight reduction in the level of magnetic
pileup caused by plasma compressibility and numerical
diffusion is compensated to some extent by a slightly larger
than expected upstream bulk velocity. Further studies will
be required in order to understand this effect.

5. Conclusions and Discussion

[30] We have revisited the reconnection timescale prob-
lem in the context of resistive magnetohydrodynamics
(MHD) simulations of the terrestrial subsolar magneto-

Figure 13. We plot the magnetosheath flow anisotropy,
kappa, along the Sun-Earth line, for several values of the
Lundquist number.

Figure 14. Here we compare Bz along the Sun-Earth line
computed in the simulations (solid lines) with that predicted
by equation (23) (dashed lines).

Figure 15. Scaling of magnetic flux pileup with Lundquist
number. The red line shows the prediction of Sonnerup and
Priest [1975] for the case k = 0.4; the green squares show
the simulation results.
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pause. In particular, we have addressed the question of the
scaling of magnetic reconnection with Lundquist number by
computing a sequence of numerical solutions, using steady
solar wind conditions with a southward interplanetary
magnetic field configuration, for the following set of
Lundquist numbers: S = {500, 1000, 2000, 5000,
10,000}. Our conclusions are summarized as follows.
[31] 1. When the plasma resistivity is constant (i.e., not

current-dependent or spatially localized), driven subsolar
reconnection occurs in thin current sheets of macroscopic
length, rather than in Petschek-like configurations where
slow shocks play a dominant role in the magnetic dissipa-
tion and plasma acceleration processes.
[32] 2. Magnetic energy piles up outside the current sheet

to accommodate the magnetosheath flow; this magnetic
pileup appears to be a ubiquitous feature of driven magnetic
reconnection, having been observed in many previous
driven reconnection scenarios [Parker, 1973; Sonnerup
and Priest, 1975; Biskamp, 1986; Wang et al., 1996; Craig
et al., 1997; Watson and Craig, 1997; Dorelli and Birn,
2003; Dorelli, 2003].
[33] 3. The scaling of magnetic pileup with Lundquist

number observed in the MHD simulations is consistent with
that predicted by the three-dimensional analytical stagnation
point flow solutions of the resistive MHD equations
[Sonnerup and Priest, 1975; Craig et al., 1997; Watson
and Craig, 1997].
[34] 4. The reconnection electric field, Ey, upstream of the

current sheet is found to scale like S�0.2, consistent with the
prediction of the Sonnerup and Priest solution (Ey / S�k/2)
with k = 0.4 (which is the approximate value of k observed
in the simulations).

[35] 5. Plasma compressibility appears to reduce the
amount of pileup required to support a given inflow, though
it does not have as strong an impact on the scaling of Ey as it
does on the scaling of Bup.
[36] 6. While the anisotropy of the inflow along the Sun-

Earth line (as measured by the k parameter in equations (4)
and (5)) is only slightly less than 1/2 (i.e., the flow is nearly
axisymmetric), the plasma pressure gradient and J � B
forces along the current sheet accelerate the plasma out the
ends of the sheet so that the flow is nearly parallel to the
magnetic field downstream of the stagnation point.
[37] Conclusions 1–4 together provide strong evidence

that in the context of resistive MHD, magnetic flux pileup
reconnection in thin Sweet-Parker current sheets (rather
than the Petschek slow shock model) is the relevant model
of reconnection at the subsolar magnetopause when the
plasma resistivity is constant. Thus since the magnetosheath
flow is observed in the simulations to be nearly axisym-
metric, we expect the reconnection rate to vanish in the limit
S ! 1. That is, without anomalous resistivity, which can
enhance the reconnection rate either by decreasing S or
spatially localizing it, global MHD simulations will likely
not reproduce Dungey’s open magnetosphere for large
values of S.
[38] There are a number of possible approaches to solving

the reconnection timescale problem implied by conclusions
1 – 4 above. One can categorize them as follows:
(1) approaches which seek solutions of the resistive MHD
equations such that the reconnection rate is insensitive to the
Lundquist number, and (2) approaches which generalize
Ohm’s law to take into account kinetic scale physics which
is neglected in the MHD approach. Both Petschek’s model
and the flux pileup models of Sonnerup and Priest [1975]
and Priest and Forbes [1986] are examples of approaches in
category 1. Petschek’s model is problematic since it appears
to be valid only when the plasma resistivity is spatially
localized. Setting k = 0 in the Sonnerup and Priest [1975]
flux pileup model is not a viable solution, since there is a
finite external pressure available to drive the magnetosheath
stagnation point flow. Thus one expects the flux pileup to
saturate at some critical value of the Lundquist number,
above which the Sweet-Parker scaling reappears [Priest,
1996; Litvinenko et al., 1996; Litvinenko, 1999]. It is
interesting to note that in the weak flux pileup models of
Priest and Forbes [1986], the saturation limit is less severe
(the postsaturation reconnection time increases logarithmi-
cally with S [Litvinenko et al., 1996; Litvinenko, 1999]),
since the pileup scales more weakly with S; nevertheless,
the pileup scaling observed in our simulations (�S1/4) seems
to be more consistent with the three-dimensional stagnation
point flow solutions than with the two-dimensional flux
pileup solutions of Priest and Forbes [1986]. Further,
spacecraft observations demonstrate that flux pileup is
rarely observed under southward IMF conditions [Anderson
et al., 1997; Mozer et al., 2002]. It is possible that the
intense current sheets observed in resistive MHD simula-
tions eventually break up due to one or more MHD
instabilities (e.g., the tearing mode or the Kelvin-Helmholtz
instability) so that the current sheet becomes turbulent.
Under such conditions, it might be possible to support high
mean field reconnection rates in the absence of extreme
levels of magnetic energy pileup. Unfortunately, limited

Figure 16. Dependence of reconnection electric field on
Lundquist number. The red line shows the prediction of
Sonnerup and Priest [1975] for the case k = 0.4; the green
squares show the simulation results.
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computational resources, which currently confine the high-
resolution GGCM simulations presented in this paper to
short timescales (�2 hours) and low Lundquist numbers
(S ] 5000), prevent us from accurately modeling such
small-scale turbulence.
[39] What about category 2 approaches, which seek to

solve the reconnection timescale problem by appealing to
kinetic theory? The most promising such approaches seem
to be those which focus on the ‘‘ion scale’’ terms (namely,
the Hall electric field and the divergence of the electron
pressure tensor) in the generalized Ohm’s law. We think
that such an approach is likely on the right track for a
number of reasons: (1) observations show that the thick-
ness of the magnetopause current layer approaches the ion
inertial scale; (2) recent reconnection modeling efforts
[Birn and Hesse, 2001; Kuznetsova et al., 2001; Ma and
Bhattacharjee, 2001; Otto, 2001; Pritchett, 2001; Shay et
al., 2001] suggest that Hall electric fields permit ‘‘fast’’
(i.e., on Alfvénic timescales) reconnection to occur inde-
pendently of the dissipation mechanism; (3) particle-in-cell
simulations demonstrate that electron pressure anisotropies
are likely responsible for the breaking of the frozen flux
constraint in collisionless current sheets with thicknesses
of the order of the ion skin depth [Hesse et al., 2001a;
Hesse et al., 2001b; Kuznetsova et al., 2001]; (4) recent
analytical and numerical solutions of the resistive Hall-
MHD equations [Dorelli and Birn, 2003; Dorelli, 2003]
have demonstrated that when reconnection occurs in thin
current sheets via the flux pileup mechanism, Hall electric
fields can allow the pileup to saturate before the recon-
nection rate begins to stall due to the finite external plasma
pressure; thus Hall electric fields allow reconnection to
proceed, even in thin current sheets, at a rate which is
independent of the Lundquist number (in contrast to the
logarithmic dependence of the reconnection rate on S
predicted by the Petschek model); (5) Hall electric fields
might in some cases allow Petschek-like configurations to
be realized in large systems even when the plasma
resistivity is spatially uniform (as argued by Shay et al.
[1999]); then, of course, one would not expect to observe
any magnetic pileup at the subsolar magnetopause under
southward IMF conditions.
[40] Points 4 and 5 are particularly compelling. Not only

do they imply that the reconnection rate should be inde-
pendent of the Lundquist number (making Alfvénic recon-
nection possible in the limit S!1), but they both predict a
reduction in the amount of magnetic pileup required to
support a given magnetosheath flow (thus potentially
explaining the observed lack of magnetic pileup at the
terrestrial magnetopause under southward IMF conditions).
For example, Dorelli [2003] argues that in a thin current
sheet driven by a two-dimensional stagnation point flow,
Hall electric fields modify the flux pileup scaling law so that
the maximum upstream magnetic field, Bup

max, scales as
follows:

Bmax
up / E

S

1þ SCdi=lC

� �1=2

; ð24Þ

where E is the reconnection electric field, di is the ion
inertial length, l is the length scale associated with the
stagnation point flow, and C is an arbitrary constant (which

is insensitive to S and proportional to di
r+1/2, where r > 0).

Thus the flux pileup saturates at a level which is insensitive
to the Lundquist number. The maximum reconnection rate
(corresponding to the upper limit implied by the finite
external plasma pressure available to drive the reconnec-
tion) is given by:

Emax / b1=2
1þ Sdi=l

SC

� �1=2

; ð25Þ

where b is the plasma beta upstream of the current sheet.
Thus if di � l (i.e., if the scale of the stagnation flow is
comparable to the ion skin depth), then Alfvénic reconnec-
tion is possible even in the limit of zero plasma resistivity
(so long as b is not too small). We note that Sonnerup and
Priest [1975] pointed out that their three-dimensional
stagnation point flow solution can be extended to include
the Hall and electric pressure gradient term in Ohm’s law;
however, in those solutions, the components of the magnetic
field are assumed to be functions only of the spatial
coordinate normal to the current sheet. Dorelli [2003]
demonstrated how to include the effects of the Hall induced
‘‘bending’’ [Mandt et al., 1994] of the magnetic field in the
k = 0 case. The authors are unaware of any Hall MHD
solutions which extend this quadrupolar magnetic field
solution to arbitrary k case (i.e., to the case where the
stagnation point flow is three-dimensional).
[41] Alternatively, it has been argued by Shay et al.

[1999] that the spatial scale of the ‘‘ion inertial region’’,
where ion bulk flows decouple from electron bulk flows,
should be microscopic in both dimensions, implying that on
larger scales, away from the ion inertial region, the current
sheet bifurcates into a system of two current sheets (similar
in structure to the Petschek slow shock configuration). The
large-scale bifurcated current sheet structure observed by
Shay et al. [1999] plays a role, similar to that played by
Petschek’s slow shock configuration, in decoupling the
reconnection rate from the dissipation physics. A Pet-
schek-like solution also has the desirable feature that there
is no magnetic flux pileup upstream of the diffusion region
(consistent with observations at the terrestrial magneto-
pause). Nevertheless, it is still not clear to us what physical
mechanism is responsible for the large-scale bifurcation
observed in the simulations of Shay et al. [1999]. Does
whistler dispersion play an essential role in the formation of
this x-type current structure, as argued by Shay et al.
[1999]? Biskamp et al. [1995] has argued, for example, that
the x-type current structure can be derived from the electron
MHD equations (in which the ions are assumed to be a
static, charge neutralizing fluid, and only the electron
dynamics are followed), but the electron MHD equations
apply only to very small-scale magnetic structures (where
the spatial scale of the magnetic field is smaller than the ion
skin depth). Recent simulations of magnetic island coa-
lescence which treated ‘‘large’’ islands (where the island
wavelength is much larger than the ion skin depth) [Dorelli
and Birn, 2003] demonstrated that the whistler mediated
reconnection rate can be sub-Alfvénic (being directly related
to the ratio of the ion skin depth and the island wavelength,
even when there are spatially localized regions with strong
electron-ion decoupling). On the other hand, the recent
scaling study of Shay et al. [2004] shows that in some cases,
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reconnection appears not to be directly driven by external
flows; rather, the reconnection process seems to occur in
phases, with an explosive current sheet collapse phase in
which the sheet bifurcates into a Petshek-like configuration.
Shay et al. [2004] refer to this phase as the ‘‘asymptotic
phase’’ of reconnection, arguing that the reconnection rate in
the asymptotic phase is internally driven (much as Petschek
reconnection is internally driven [Forbes, 2001]) and
insensitive to external boundary conditions. Thus modern
two-dimensional reconnection theory seems to have
come full circle, and the issue of whether reconnection in
astrophysical contexts occurs in long, thin ion inertial sheets
or in microscopic Petschek-type sheets remains unresolved
even in the context of two-fluid theory.
[42] Nevertheless, from a practical perspective, resistive

Hall MHD and two fluid approaches (which include elec-
tron skin depth scale physics) have the virtue of being
capable of simulating ‘‘mesoscale’’ systems which span
several hundred ion skin depths, running for several hun-
dred Alfvén times. In contrast, full particle-in-cell simula-
tions are typically confined to simulation domains which
span only several ion skin depths, running for several ion
gyroperiods. Thus it is quite possible that in the next several
years, as Hall MHD codes begin to make use of adaptive
mesh refinement techniques, truly global Hall MHD simu-
lations of the terrestrial magnetosphere will be possible,
and, given the exciting results coming out of recent micro-
scale simulations, such global Hall MHD simulations may
finally solve the reconnection timescale problem which has
been with us since the appearance of the Sweet-Parker
theory almost 50 years ago.
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