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Abstract 
This paper provides the first comprehensive description of the Z1, the mechanical 
computer built by the German inventor Konrad Zuse in Berlin from 1936 to 1938. The 
paper describes the main structural elements of the machine, the high-level 
architecture, and the dataflow between components. The computer could perform the 
four basic arithmetic operations using floating-point numbers. Instructions were read 
from punched tape. A program consisted of a sequence of arithmetical operations, 
intermixed with memory store and load instructions, interrupted possibly by input and 
output operations. Numbers were stored in a mechanical memory. The machine did not 
include conditional branching in the instruction set. 
While the architecture of the Z1 is similar to the relay computer Zuse finished in 1941 
(the Z3) there are some significant differences. The Z1 implements operations as 
sequences of microinstructions, as in the Z3, but does not use rotary switches as micro-
steppers. The Z1 uses a digital incrementer and a set of conditions which are translated 
into microinstructions for the exponent and mantissa units, as well as for the memory 
blocks. Microinstructions select one out of 12 layers in a machine with a 3D mechanical 
structure of binary mechanical elements. The exception circuits for mantissa zero, 
necessary for normalized floating-point, were lacking; they were first implemented in 
the Z3. 
The information for this article was extracted from careful study of the blueprints drawn 
by Zuse for the reconstruction of the Z1 for the German Technology Museum in Berlin, 
from some letters, and from sketches in notebooks. Although the machine has been in 
exhibition since 1989 (non-operational), no detailed high-level description of the 
machine’s architecture had been available. This paper fills that gap. 

1 Konrad Zuse and the Z1 

The German inventor Konrad Zuse (1910-1995) built his first computing machine from 1936 to 19381 
(from 1934 to 1935 he experimented with small mechanical circuits). In Germany, Zuse has always 
been considered the father of the computer although the machines he built during WWII became 
known only after the conflagration. Zuse studied civil engineering at the Technische Hochschule 
Charlottenburg (today’s Technical University of Berlin). His first employer was the company Henschel, 
who had just started building military airplanes in Berlin in 1933 [1]. The duty of the 25 years old was 
to carry out the long chains of structural calculations needed for the manufacturing process of 
aircraft components. As a student, Zuse had already started thinking about ways of mechanizing 
computation [2]. Therefore, after working just several months for the Henschel Flugzeugwerke, he 
decided to quit, build a mechanical computer, and start his own business, in fact, the first computer 
company in the world. 

During the period 1936-1945, Konrad Zuse was unstoppable, even after two short-lived calls to the 
front. He could manage to be recalled to Berlin to work part-time for the Henschel Flugzeugwerke, 
and part-time for his own company. In those nine years, he built the six computers known today as 
the Z1, Z2, Z3 and Z4, as well as the specialized S1 and S2 machines. The last four were built after 
WWII had already started. The Z4 was finished during the closing months of the war. Zuse’s original 
abbreviations for the machines’ names were V1, V2, V3 and V4 (meaning “Versuchsmodell”, or 
prototype). After the war, he changed the V for a Z for obvious reasons. The V1 (Z1 in what follows) 

                                                            
1 The precise chronology of his line of computing machines was provided by K. Zuse in a small handwritten note 
from March 1946. There, the V1 is dated as having been built in the years 1936-1938. 
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was a fascinating piece of technical brinkmanship: it was a completely mechanical computer, but 
instead of using gears and wheels to represent the ten decimal digits (as Babbage had done in the 
previous century, or IBM was doing with its Hollerith machines), Zuse decided to build a fully binary 
computer. His machine was based on components in which the forward linear movement of a small 
rod or metallic plate represented a one, and no movement represented a zero (or vice versa, 
according to the component). Zuse developed novel types of mechanical logical gates and finished 
the first prototype of the machine in his parent’s living room. The sequence of events that led to the 
Z1 and subsequent machines has been appraised by Zuse himself in his autobiography [2]. 

The Z1 was a mechanical but also a surprisingly modern computing machine: it was based on binary 
numbers, it used a floating-point representation for the data and could perform the four basic 
arithmetic operations. The program was read from a punched tape (no conditional branch was 
available though), and the results could be stored to or read from memory (16 words). The machine 
cycle was around 4 Hz.  

The Z1 was very similar to the Z3, finished in 1941, whose architecture has been already described in 
the Annals [3]. However, the detailed high-level architecture of the Z1 has never been explained 
before. The original prototype was destroyed during a bombing raid in 1943. Only a few sketches and 
photographs of the mechanical components survived. In the 1980s, Konrad Zuse, who had retired 
many years earlier, obtained financing from Siemens and other German sponsors for building a full 
replica of the Z1 which is now housed in Berlin’s Technology Museum (Fig. 1). Zuse built the machine 
with the help of two engineering students: He prepared a full set of blueprints, painstakingly drawing 
every single mechanical component (to be cut from sheets of steel), and supervising the construction 
over the course of several years at his own house in Hünfeld, Germany. The first sketches of the Z1 
reconstruction were drawn in 1984. In April of 1986 Zuse drew a timeline expecting to have the 
machine finished by December of 1987. When the machine was delivered to the Berlin museum in 
1989 it was shown running and computing some arithmetical operations on several occasions. 
However, the reconstructed Z1 was, like the original, never reliable enough to run unattended for 
long stretches of time. It even failed at the inauguration and Zuse spent months repairing the 
machine. After Konrad Zuse passed away in 1995, the machine was never restarted again. 

 
Fig. 1: A view of the reconstructed Z1 in Berlin (from the Konrad Zuse Internet Archive [5]). The user can rotate 
the view around the machine, can zoom in and out. The virtual display is based on thousands of linked 
photographs. 
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Although we have a reconstruction of the Z1 in Berlin, fate struck twice. Other than drawing the 
blueprints, Zuse made no serious effort to write a complete top-down description of the 
reconstructed Z1 (he expected a local university to do it). This would have been necessary, because it 
is evident from comparing the reconstruction with old photographs of the Z1 built in 1938, that the 
new machine has been “streamlined”. The higher precision of the machining equipment available to 
Zuse in the 1980s allowed him to build the machine using layers of steel plates which could be placed 
tighter together. The new Z1 fills a significantly smaller volume than the old Z1. It is also not 
completely clear if the new Z1 is strictly a one-to-one logical and mechanical clone of the original 
machine, or if Zuse’s experience with the Z3 and later machines allowed him to improve portions of 
the reconstructed Z1. In the set of mechanical blueprints drawn from 1984 to 1989, there are at least 
six different designs for the addition unit, having between five to eight, and finally up to 12 
mechanical layers.2 Zuse left no detailed written record which could allow us to answer such 
questions. Still worse, he rebuilt the Z1 and left no comprehensive logical description of it – for the 
second time! He acted like those celebrated clockmakers who only draw the parts of their watches, 
leaving no further explanation: first-rate clockmakers would need no further clarifications. His two 
student assistants documented only the memory and the tape reader, a heaven-sent piece of 
information [4]. Visitors to the Berlin museum can only wonder at the thousands of components 
visible in the machine. They can both wonder and despair, since it is almost impossible, even for 
professional computer scientists, to visualize the inner workings of this mechanical Leviathan. The 
machine is there -- but unfortunately dead.  

 

 
Fig. 2: The mechanical layers of the Z1. The eight memory layers can be seen on the right, the 12 processor 
layers on the left. The lower section with levers is used for transmitting the clock cycles to all parts of the 
machine. 

This paper is based on a careful study of the blueprints of the Z1, scattered notes in Zuse’s 
notebooks, and numerous on-site inspections of the machine. The reconstructed Z1 has been non-
operational for so many years because the steel plates used by Zuse bend under stress. For this 
paper, more than 1100 large format drawings of the machine’s components were reviewed, as well 
as 15.000 pages in notebooks (only a small fraction thereof contained information about the Z1 
though). I could only see a short video of parts of the machine operating (filmed almost 20 years 
ago).  Deutsches Museum in Munich houses 1079 blueprints from Zuse’s private papers, while the 
Berlin Technical Museum has another 314 in its archives. Fortunately, some blueprints include also 
the definition and timing of some microinstructions for the Z1, and also a few examples of bit by bit 
handwritten calculations made by Zuse. Such examples were probably used by Zuse to check the 
machine’s internal operation and find bugs. This information was like a Rosetta stone, which allowed 
us to correlate the Z1 microinstructions with the diagrams and blueprints, and also with our relatively 

                                                            
2 All the blueprints for the reconstruction of the Z1 have been made available through our „Konrad Zuse 
Internet Archive“ at http://zuse-z1.zib.de. 
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deep knowledge of the relay-computer Z3 (for which we have complete circuits [5]). The Z3 is based 
on the same high-level architecture as the Z1, but is different in an important number of ways. 

This paper proceeds top-down: first we review the block architecture of the Z1, the layout of the 
mechanical components, and I also provide some examples of the mechanical gates used by Zuse. 
We then look in more detail at the Z1 core elements: the clocked addition units for exponent and 
mantissa, the memory, and the microsequencer for arithmetical operations. We show the interplay 
of the mechanical elements and how the “sandwiched” layout of steel plates helped Zuse organize 
the computation. We look at the multiplication and division process, at input and output. The last 
part of the paper briefly situates the Z1 in its historical context. 

 

2 Block-architecture 

The Z1 was a clocked machine. Being a mechanical device, the clock was subdivided into four 
subcycles which consisted in the movement of mechanical components in four orthogonal directions, 
as shown in Fig. 2 (left side, see “cycling unit”). Each movement direction was called an 
“engagement” by Zuse. He aimed for a 4Hz clock cycle but the Berlin reconstruction never was 
operated faster than at 1Hz (four engagements per second). At that speed, a multiplication takes 
around 20 seconds. 
 

 
Fig. 3: Block diagram of the Z1 (1936-38) according to the reconstruction of 1989. The original Z1 had only 16 
words of memory instead of 64. The punched tape was made of 35mm film tape. Each instruction was encoded 
using 8 bits. 

The Z1 has a number of features later adopted in the Z3. From a modern perspective, the most 
important innovations in the Z1 (see Fig. 3) were the following:  
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a) It was based on a fully binary architecture for the memory and the processor. 
b) The memory was separated from the CPU. In the Berlin reconstruction, the memory and 

punched tape reader constitute about one half of the machine. The processor, I/O consoles, 
and the microcontrol unit constitute the other half. The original Z1 had 16 words of memory, 
the reconstruction has 64. 

c) The machine was programmable: the program was read from punched tape using 8 bits (two 
bits for the opcode and six bits for memory addressing, or three bits for the opcode of the 
four arithmetical and the two I/O operations). Therefore there were only eight instructions: 
the four basic arithmetical operations, load-from and store-to memory, one instruction for 
reading data from a decimal panel, and another for showing the contents of the result 
register on a mechanical decimal display. 

d) Floating-point was used for internal data representation, in the memory and in the 
processor. Therefore, the processor was divided into two parts: one for handling the 
exponents, another for handling the mantissas. The mantissa had 16 bits for the bits after 
the binary point. The bit to the left of the point was always 1 (normalized floating-point) and 
did not have to be stored. Exponents were represented with 7 bits in two’s complement 
format (running thus from -64 to +63). The sign of the floating-point numbers was stored in 
one additional bit. Therefore the word-length in memory was 24 bits (16 bits for the 
mantissa, 7 for the exponent, one bit for the sign). 

e) The special case of zero in arguments or results (which cannot be expressed with a 
normalized mantissa, where the leading bit is always 1) can be handled within the floating-
point representation as special values of the exponent. This was done in the Z3 but not in the 
Z1, also not in its reconstruction. Therefore, neither the original Z1, nor the reconstruction, 
can work with zero as intermediate result. Zuse was aware of this shortcoming, but he left 
the solution to the relay machine, which was easier to wire. 

f) The CPU was microcoded: operations were broken into sequences of microinstructions, one 
for each machine cycle. The microinstructions produced a specific dataflow within the 
arithmetical-logical units (ALUs), which were running nonstop, adding whatever two 
numbers were stored in its two input registers, in every cycle. 

g) Curiously, memory and processor ran independently: the memory would put data at or 
collect data from the communication interface, whenever the punched tape gave the order. 
The processor would pick, or put data at the interface, when a load or store operation was 
executed. It was possible to run only the processor and shut-down the memory, in which 
case the data at the interface, supposedly coming from the memory, became zero. It was 
also possible to run only the memory and shut-down the processor. This allowed Zuse to 
debug each half of the machine independently. When running together, a shaft connecting 
the cycling units in each half synchronized both parts of the machine. 

Further innovations in the Z1 were similar to some of the ideas presented later in the Z3. The 
instruction set was practically the same as in the Z3 but the Z1 could not extract square roots. The Z1 
used discarded 35mm film tapes as punched tape. 

Fig. 3 shows the abstract diagram of the reconstructed Z1. Notice the two main halves of the 
machine: the memory is in the upper half, and the processor in the bottom half. Each half had its 
own rotating cycling unit, which further divided each cycle into four mechanical movements in the 
directions shown by the arrows. These four movements could be communicated to any part of the 
machine using the levers distributed under the computational components. The punched tape was 
read, one instruction at a time. The instructions had different durations. Load and store operations 
took one cycle, all other operations needed several cycles. The memory address was contained in the 
lower six bits of the 8 bit opcode, allowing the programmer to refer explicitly to 64 memory 
addresses. 

Memory and processor communicated through the buffer between both units shown in Fig. 1. In the 
CPU, the internal representation of the mantissa was extended to 20 bits: two additional bits were 
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added before the binary point (for the binary powers  and ), and two more bits for the lowest 
binary powers (  and ), in order to increase the accuracy of the CPU for intermediate results. 
In the processor the mantissa had 20 bits representing the binary powers   to . 

The decoder took an instruction from the punched tape reader, determined the operation, and 
started controlling the memory unit and the processor as needed. A number could be read from 
memory to the first of two CPU floating-point registers (using a load operation). A further load 
operation would read a number from memory to the second CPU register. The two registers could be 
added, subtracted, multiplied, or divided in the processor. Such operations require exponent 
addition or subtraction (with a two’s complement adder), as well as an adder for the mantissas. The 
sign of the result of a multiplication or division was handled in a “sign unit” connected directly to the 
decoder. 

An input instruction from the punched tape stopped the machine and allowed the operator to enter 
data by pulling four decimal digits from a mechanical panel, entering the exponent of the floating 
point representation with a small lever, and also the sign of the number. The operator could then 
restart the machine. An output instruction stopped also the machine and showed the contents of the 
result register in a decimal mechanical panel, until the operator restarted the machine pressing a 
lever. 

The microsequencer in Fig. 3 constitutes, together with the exponent and mantissa addition units, 
the core of the computation capabilities of the Z1. Each arithmetical or I/O operation was divided 
into “phases”. The microsequencer started counting and selected the appropriate microoperation in 
the corresponding layer, out of 12 possible layers of mechanical components in the addition units. 

Therefore, a minimal program in a punched tape could be, for example: 1) Load number from 
address 1 (implicitly to the first CPU register), 2) Load number form address 2 (implicitly to the 
second CPU register), 3) add, 4) show result in decimal. This program could thus allow the operator 
to use the Z1 as a simple mechanical calculator for predefined operations. Of course, the sequence of 
computations could be much longer: automatic sequences of operations were programmed using the 
memory as storage for constants and intermediate results (in the latter Z4 computer, one tape used 
for mathematical computations was two meters long). 

The architecture of the Z1 can be summarized using modern terminology as follows: it was a 
programmable normalized floating-point Von Neumann machine (processor and memory were 
separate), with external read-only program, with a memory for sixteen 24-bit words. It was capable 
of accepting decimal numbers of four digits (and an exponent, as well as a sign) as input, for 
transforming them into binary.  It was capable of performing the four arithmetical operations with 
the data. The binary floating-point result could be transformed back into decimal scientific notation 
readable by the user. There was no conditional, nor unconditional branching in the instruction set. 
Exception handling for zero results was lacking.  Each instruction was broken into microinstructions 
“hardwired” in the machine. A microsequencer orchestrated the execution of the microinstructions. 
In the single surviving video of the machine operating, it looks to the eye as the moving parts of a 
heirloom. But this machine was weaving numbers. 

 

3 Layout of the mechanical components 
 
The Berlin reconstruction of the Z1 is based on a very clean layout. All mechanical components seem 
to have been arranged in an optimal way. We mentioned that Zuse designed at least six different 
versions of the processor. The relative position of the main components was fixed from the 
beginning and might reflect the original distribution of the mechanical elements in the original Z1. 
There are two main divisions: a gap separates the memory from the processor (as shown in Fig. 3). In 
fact, both parts of the machine could be actually pulled apart for debugging purposes since they 
were mounted on separate tables with rollers. A further horizontal plane subdivides the machine 
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into an upper part containing the computational components (those visible in photographs of the 
Z1), and a lower part containing all the synchronization levers. This Z1 “underworld” is only visible 
when the visitor bends over to look underneath the computational skyline. Fig. 4 is a drawing from 
the blueprints showing the computation and the synchronization levels for part of the processor. 
Notice the 12 layers of computational components and the lower section with three levels for levers. 
This blueprint is a good example of how difficult it can be to interpret the drawings. While there is 
much detail about the size of the parts, there are just a few annotations about their use. 
 

 
Fig. 4: Blueprint for the computation and synchronization layers of the Z1 (exponents unit) 

 
Fig. 5 shows the distribution of logical components in the reconstructed Z1, seen from above, and as 
drawn by Zuse, further annotated with the logical functionality of each block (this sketch has been 
available since the 1990s). On the upper part we see the three memory banks. Each can contain eight 
8-bit words per layer. Every memory bank has 8 mechanical layers, so that a total of 64 words can be 
stored. The first memory bank (10a) is used for the exponent and sign, the last two banks (10b, 10c) 
are used for the lower 16 bits of the mantissa of the stored numbers. This distribution of bits allowed 
Zuse to build three identical 8-bit memory banks and use them for exponent and mantissa, 
simplifying thus the mechanical construction. 
Between memory and processor there is a “buffer” for passing numbers to the processor (blocks 
12abc), or for receiving numbers from it. There is no way of coding constants in the punched tape. All 
numbers have to be entered by the user using the decimal input panel (block 18, right side), or must 
be generated by the computer itself as intermediate results. 
Each unit in this diagram shows just the uppermost layer. Remember that the Z1 is built like a 
“sandwich” of mechanical parts. Each computational layer is strictly separated from the laver above 
or below (each layer has a metallic floor and a metallic ceiling). Communication between layers is 
done using vertical rods than can pass movement from one layer to those above or below it. The 
vertical rods are the small circles drawn between the rectangles representing layers of computation. 
The somewhat larger circles drawn inside the rectangles represent logical operations. Inside each 
circle we can find a binary gate (and going down through the layers, up to 12 gates for each circle). 
This drawing allows us to make an estimation of the number of logical gates present in the Z1. Not all 
units have the same height, and not all layers are populated with mechanical components. A 
conservative estimation of the number of binary elements would be 6.000 gates. 
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Fig. 5: Diagram of the Z1, showing the mechanical building blocks. 

 
Zuse assigned the numbers shown in Fig. 5 to the different modules of the machine. The purpose of 
the modules is the following: 
 

Memory Block 
11a:  Decoder for the six-bit memory addresses 
11b:  Punched tape reader and op-code decoder 
10a:  Memory bank for 7-bit exponents and sign 
10b, 10c:  Memory banks for the fractional part of the mantissa 
12abc:  Interface to and from the processor for load or store operations 
 
Processor Block 
16:  Control and sign unit 
13:  Multiplexer for the two ALU registers in the exponent part 
14ab:  Multiplexer for ALU registers, one-bit two-way shifters for multiplication and division 
15a:  ALU for the exponent 
15bc:  20-bit ALU for the normalized mantissa (18 bits for the fractional part) 
17:  Microcode control 
18:  Decimal input panel to the right, output panel to the left 

 
One can imagine computation flowing in this diagram from top to bottom: from the memory, the 
data comes to fill the two registers available to the programmer (which we call F and G). These two 
registers are distributed along blocks 13 and 14ab. The two registers are fed to the ALUs (blocks 
15abc). The result is cycled back to register F or G (as result register), or back to memory. The result 
can be shown in the decimal display using the “re-translate” instruction (binary to decimal 
conversion). 
In what follows we look in more detail to each module, concentrating our efforts in the main 
computational components. 
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4 The mechanical gates 
 
The mechanical structure of the Z1 can be best understood by looking at a few simple examples of 
the type of binary logic gates that Zuse used in his machines. The classical digital representation for 
decimal digits has always been the rotary dial. A gear is divided into ten sectors -- by rotating the 
gear it is then possible to count from zero to nine. Zuse decided as early as 1934 to use the binary 
system (which he called, following Leibniz, the dyadic system). In Zuse’s technique, a planar plate can 
have one of two positions (0 or 1). It is possible to move from one state to the other using linear 
motion. Logical gates pass movement from one plate to another, according to the value of the 
represented bits. The structures are three-dimensional: they consist of arrangements of superposed 
planar plates which transmit movement usually through cylindrical rods or pins positioned vertically, 
at right angles to the plates. 
 
We show examples of the three basic gates: conjunction, disjunction, and negation. There are many 
possible mechanical realizations for the main idea, and Zuse showed great creativity drawing always 
the variation of a gate that best fitted the 3D structure of the machine. Fig. 5 shows what Zuse called 
the “elementary gate”. The “actor plate” can be regarded as the machine cycle. This plate moves 
cyclically from right to left and back. The upper plate is the data bit we are using for control. It can be 
in the position 1 or 0. The rod going though the openings moves horizontally following the plate 
(keeping its verticality). If the upper plate is in the 0-position, the actor plate’s movement cannot be 
transmitted to the actuated plate (see Fig. 6, left side). If the data bit plate moves to the 1-position, 
the movement of the actor plate is transmitted to the actuated plate. This is what Konrad Zuse called 
a “mechanical relay”, just a switch that closes a mechanical “current”. This elementary gate can thus 
copy a bit from the upper to the acted plate, rotating the movement of the bit by 90 degrees. 
 

 
Figure 6: An elementary gate is a switch. If the data bit is 1, the actor and actuated plates are connected. If the 
data bit is zero, they are disconnected and the movement of the actor is not transmitted. 
 
Fig. 7 shows now such plate arrangements as seen from the top. The actor plate is shown with its 
opening. The control plate in green pulls the circle (rod) up or down. The actuated plate (red) can 
move to the right or left, but only when the rod is in such a position that the actor’s opening moves 
the rod. There is a drawing of the equivalent switch to the left of each mechanical top view. The 
control bit can close or open the gate. The actor plate can be pulled or pushed (as shown by the 
arrows). Zuse’s convention was to always draw the switch in the zero position of the control bit, as 
done in Fig. 7. Zuse preferred plates to be pushed by the actor plate (right side of Fig. 7) rather than 
be pulled (left side of Fig. 7). It is now very easy to build a negation gate, by using a closed switch 
which is opened by the position 1 of the control bit (as shown in the bottom two diagrams in Fig. 7). 
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Having a mechanical relay, it is now straightforward to build the rest of the logical operations. Fig. 8 
shows the necessary circuits, now only using abstract notation. The equivalent mechanical 
contraptions are easy to conceive. 
 

 
Fig. 7: Some variations of the elementary gate and Zuse’s abstract notation for mechanical relays. The relays 
are drawn as switches. By convention, the drawing always shows the zero-position of the control bit. The 
arrows show the possible movements. The actuator plate can be pulled to the left (left side diagrams), or 
pushed to the right (right side diagrams). The initial position of the mechanical relay can be in the closed 
position (lower two diagrams). In that case the relay acts as a negation, since the output is the negation of the 
control bit. 

 
Fig. 8: Some logical gates built from mechanical relays. The lowest diagram, an XOR, can be built by using 
mechanical relays with two possible actuated plates, as shown in the diagrams. The mechanical equivalents are 
easy to design. 
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Now everybody can start to build his/her Zuse mechanical computer. The basic element is the 
mechanical relay. More complex connections (like the relays with two actuated plates) can be 
designed, and the corresponding mechanics has to be built using plates and rods. 

The main problem for building a complete computer is to interconnect all components. Notice that 
the control bit always moves orthogonally to the result bit. Each completed logical operation rotates 
the mechanical movement by 90 degrees. The next logical operation rotates the movement by 90 
degrees, and so on. After four gates, we are back to the original direction of movement. This is why 
Zuse’s cycling units used the four directions NESW. Within a machine cycle it is possible to execute 
four layers of logical computations. The logical gates can be simple, such as a negation, or complex, 
such as a gate with two actuated plates (half of an XOR). The clocking in the Z1 is such that the 
machine completes an addition in four engagements: in engagement IV the arguments are loaded. 
Engagements I and II compute partial sums and carries, and engagement III the final result. 
 
Result bits can be transferred to different horizontal levels than the level at which the input bits 
move. That is, rods can be also used to move bits “up” or “down” between the layers of the machine. 
We will see this later in the addition circuits. 

At this point Fig. 5 should make more sense: the circles inside the different units are exactly the 
circles of Zuse’s abstract notation and pinpoint the position of logical gates. We can now abstract 
from the mechanics and discuss the Z1 from a more logical point of view. 

The memory of the Z1 

The memory of the Z1 was until now the best understood part of the Z1. It was described by 
Schweier and Saupe [4] in the 1990s. A very similar type of memory was used for the Z4, a relay 
computer finished by Konrad Zuse in 1945. The Z4 had a processor built with telephone relays, but 
the memory was mechanical, just like in the Z1. The mechanical memory of the Z4 is housed today at 
Deutsches Museum. Its operation has been simulated in a computer by a student assistant. 

The main concept used in the Z1 was that a bit can be stored using a vertical pin which can be set in 
one of two possible positions. One position represents zero, the other position represents one. The 
diagram below shows how the memory bits can be set by moving them from one position to the 
other. 
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Figure 9: One mechanical bit in the memory. The pin can be stored in the zero or one position. Its position can 
be read. 

 

Diagram 9(a) shows two stored bits. In step 9(b), a control plate moves the pins up. In step 9(c) the 
horizontal actuated plate is pusehd (lower bit) or not (upper bit) by the stored bit and the clocked 
plate. In step 9(d) the bits are moved back to their original position, where the vertical control plate 
can bring them to position 9(a). Reading a bit from this type of memory was a destructive process. 
After reading a bit, the contents of the bit cell had to be restored by the movement back shown in 
9(d).  

The memory words were addressed by decoding the 6 bits used for an address. Three bits selected 
one of 8 layers, the other three one of eight memory words. The decoding circuit for each layer was a 
classical binary tree of relays with three levels, as used in the Z3 (with a different number of levels). 

We do not delve further into the structure of the mechanical memory. The details can be consulted 
in [4]. 

 

The addition unit of the Z1 

The addition unit of the reconstructed Z1 differs from the type of addition unit described by Konrad 
Zuse in one document finished after the war. In that document [6], the binary digits are handled 
using OR, AND, and identity (NOT-XOR) logical gates. In the Z1 reconstruction, the addition unit uses 
two XORs and one AND computation.  

The first two computations performed are: a) the bitwise XOR of the two registers to be added, 
storing the result, b) the bitwise AND of the two registers to be added, storing the result. The third 
step is the computation of the carry bits using the information from the AND and the XOR operation. 
Once the carry bits have been set, the final step is to compute a bitwise XOR of the carry bits with the 
result of the first bitwise XOR. 

The example below shows how to add two binary numbers using the steps mentioned above. 

Number 1 1 0 1 1 1 
Number 2 0 0 0 0 1 

XOR 1 0 1 1 0 
AND 0 0 0 0 1 
Carries 0 1 1 1 0 
Result 
(XOR) 1 1 0 0 0 

 

Konrad Zuse used “anticipating carriage” in all his machines. Instead of propagating a carry through 
the different binary powers sequentially, the carry for all positions can be set in one step.  The 
example above serves to illustrate the procedure. The first XOR is the partial result of the sum of the 
two registers without considering carriages. The AND computes the generation of carry bits: they are 
transported to the next bit to the left, but are further transported to the next binary position as long 
as there is a one in the result of the previous XOR computation. In the example, the first carry 
computed with the AND is transformed into three carries, which are finally XORed with the result of 
the first XOR. A sequence of consecutive 1’s from the XOR operation operates like a kind of 
bandwagon for transporting AND-generated carries until the chain of 1’s breaks. 

The circuit shown in Fig. 10 is the addition circuit used in the reconstructed Z1. The diagram shows 
the addition of two bits stored in the a and b rods (a could be the i-th bit of register Aa, and b the 
corresponding bit of register Ab). The XOR and the AND computations are performed in parallel using 
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the binary gates 1,2,3, and 4. The AND operates on gate 5, generating the carry bit ui+1, while the 
XOR closes or leaves open the “chain” of XOR bits using gate 6. Gate 7 is an auxiliary gate for passing 
the XOR result to the upper level. Gates 8 and 9 compute the final XOR to complete the addition. 

The movements of the different components are indicated by the arrows. All four cycle directions are 
used, that is, an addition takes one full cycle, from operand loading up to result generation. The 
result is passed to rod e, the i-th bit of the register Ae. 

This addition circuit is located in layers 1, 2, and 3 of the addition block (see Fig. 13 further down). It 
is remarkable that Konrad Zuse, who had no formal training in binary logic, was working with 
anticipating carry. The ENIAC, the first large-scale electronic computer, propagated the carry 
sequentially from one decimal position in an accumulator to the next. The Harvard Mark I used 
anticipating decimal carry. 

 
Fig. 10: Addition unit of the Z3. Computation runs from left to right. Bitwise AND and XOR are computed first 
(gates 1, 2, 3, 4). The carry bits are computed in engagement II (gates 5 and 6). In engagement III an XOR 
finishes the computation of the addition (gates 8 and 9). 

 

5 The sequencer of the Z1 
 
Every operation in the Z1 is broken into a sequence of microinstructions. This is done through a kind 
of table of “criteria” consisting of 108 metallic plates placed in pairs, as shown in Fig. 11 (here we 
only see the top pair of plates, as seen from layer 12. The rest of the plates is situated below these 
two upper plates, across the 12 layers). The entries in the table (the metallic plates themselves) are 
ordered according to the values of ten bits: 
 

- The Op0, Op1 and Op2 bits contain the binary opcode of the instruction 
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- The bits S0 and S1 are conditions bits, set by other parts of the machine. When S0=1, for 
example, an addition is transformed into a subtraction. 

- The bits Ph0, Ph1, Ph2, Ph3, Ph4 are used to count the number of microcycles (or “phases”) 
in an instruction. Multiplication, for example, is executed in 20 phases and the five bits Ph0 
to Ph4 advance from 0 to 19 during the operation.

 
The ten bits theoretically allow us to define up to 1024 different conditions or cases. An instruction 
can contain up to 32 phases. The ten bits (opcode, condition bits, and phase) push metallic pins 
(colored gray in Fig. 11) which hold the microcontrol plates from snapping to the left or right (each 
plate is attached to a spring, shown in the figure). Each microcontrol plate has a different 
configuration of teeth, which determines if the current position of the ten control pins can stop the 
plate from snapping or not. Each microcontrol plate has therefore an “address”. When the ten 
control bits contains that address, the plate snaps to the right (the upper set of plates), or to the left 
(the lower set of plates in Fig. 11). 
 
If a control plate moves to the right it presses on four condition bits (A, B, C, D). Each metallic plate is 
cut so that it presses on a different combination of A, B. C, and D according to the selected criterion.  
 
Since the plates are mounted on top of each other, across the 12 layers of the machine, activating a 
control plate automatically selects the layer for the next operation. One microoperation in the 
exponent unit can also be started parallel to a microoperation in the mantissa unit, since two plates 
can snap simultaneously: one to the left, another to the right. It is also possible for two plates to snap 
on two different layers of the right side (mantissa control), but mechanical constraints limit this kind 
of “parallelism”. 

 

 
 

Fig. 11: The control plates. The teeth of each plate makes it stop, according to the position of the metallic pins 
(in grey), activated by the ten bits Op2 to Ph0. Springs make a plate snatch to the right (upper plate) or to the 
left (lower plate), when its “address” has been selected. Selecting a plate out from the 12-level stack of plates 
selects the layer for the next operation. The teeth A, B, C or D can be cut, so that only the necessary operation 
is selected by pressing on pins in the microcontrol unit. In the diagram, the upper plate has moved to the right 
and presses on the three pins A, C, and D. 

 
Controlling the Z1 amounts thus to adjusting the teeth of the metallic plates so that each one of 
them responds to a specific ten-bit combination, for acting on the left, or on the right units. The left 
side controls the exponent’s half of the processor. The right side the mantissa half. The alternatives 
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A, B, C or D are exclusive, that is, only one of them is selected by a microcontrol plate (by not pushing 
it).  
 
6 The Processor’s Datapath 
 
Fig. 12 shows the floating-point processor of the Z1. The processor has one datapath for handling the 
exponents (left side) and one for handling the mantissas (right side). The floating-point registers F 
and G consist of 7 bits for the exponent, and 17 bits for the mantissa. The exponent-mantissa pair 
(Af,Bf) is FP register F and the pair (Ag,Bg) is FP register G. The signs of the arguments are handled 
externally, in a sign unit. The sign of a product or a division is computed in advance. The sign of an 
addition or subtraction is adjusted after the operation takes place. 

 In Fig. 12 we can see the registers F and G and their connections to the rest of the processor. The 
ALU (arithmetical logical unit) contains two FP registers: the pair (Aa,Ba) and the pair (Ab,Bb). These 
registers are the direct inputs to the ALUs. They have to be loaded and can retain partial results 
during several iterations, due to the feedback bus from the ALU-outputs  Ae and Be.  

In the Z1 the data buses are used in “three-state” mode, that is, many inputs can push on the same 
data line (which is a mechanical component). There is no need to isolate “electrically” the data lines 
from the inputs, since no electricity is in play. Since a zero input is represented by no movement of a 
mechanical part (no pushing), while a one represents a movement (pushing), there is no conflict 
between the parts. If two parts push on the same data line, the only important thing is that they act 
in step with the machine cycle (pushing only works in one direction). 

Fig. 12: The processor datapath in the Z1. The left part corresponds to the exponent’s ALU and registers, the 
right side to the mantissa’s. The resulta Ae and Be can be fed back to the temporary registers, or they can be 
negated, or shifted. The four bits representing a decimal digit are copied to register Ba directly, one digit after 
another, using four bits. The decimal-binary conversion operates on this data. 
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The only registers visible to the programmer are (Af,Bf) and (Ag,Bg). They have no address: the first 
register loaded by a Load operation is (Ag,Bg), the second register loaded afterwards is (Ag,Bg). Once 
two registers have been loaded, the arithmetical operations can be started. (Af,Bf) is also the result 
register for arithmetical operations. The second register can be implicitly loaded after an arithmetical 
operation and be the second argument for a new arithmetical operation. This scheme of register 
usage is the same as in the Z3. In the Z3, however, there is no register pair (Ag,Bg). The coordination 
between main and auxiliary registers is more complicated than in the Z1. 
 
As can be seen from the processor datapath, the individual registers Aa, Ab, Ba, and Bb can be loaded 
with different kinds of data: values from other registers, constants (+1, +1, 3 and 13), negative values 
of other registers, and the values coming back from the ALUs. The ALU outputs can be negated or 
shifted. A shift to the left by n places is represented by a box containing a multiplication with ; a 
shift to the right by n places by a division with . These boxes are mechanical circuits containing the 
appropriate bit displacement or bit complementation. The result of the addition of the registers Ba 
and Bb, for example, is stored in Be and can be transformed in several ways: the result Be can be 
negated (-Be), can be shifted one or two places to the right (Be/2, Be/4), or it can be shifted one or 
three places to the left (2Be, 8Be). Every such computation is performed in a different layer of the 
mechanical stack of layers constituting the ALU. The appropriate result, according to the active 
computation, is passed back to register Ba or Bb. Case selection is done by levers that activate the 
appropriate layer as selected by the microcontroller. The result Be can also go straight to the 
memory unit (the corresponding bus line is not shown in Fig. 12). 
 
The ALU performs an addition in every cycle. All registers Aa, Ab, Ba, and Bb are erased after an ALU 
computation, and can be reloaded with the feedback values. 
 

 
Fig. 13: The layered spatial distribution of operations in the processor. The shifters for Be are on the left stack. 
The addition unit is distributed between the three leftmost stacks. The shifters for Bf are in the right stack, and 
the binary equivalent of 10^-16 too. The result goes to memory through the line labeled Res on the right. The 
two registers Bf and Bg arrive from memory as First (Op1) or second operand (Op2). 
 
Register Ba has a special use for the conversion of four decimal digits into binary. Each decimal digit 
entered through the mechanical panel is transformed into 4 bits. Groups of 4 bits are fed directly into 
register Ba (at position ), which can advance the four bits by performing a multiplication with 
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the factor 10, adding then the next digit to the partial result, multiplying again by ten, and so on. If 
we want to transform the number 8743 from decimal to binary, for example, the digit 8 is entered 
first and is multiplied by ten. Then 7 is added to the result, and the new sum (87) is multiplied by ten. 
The result (870) is then added to 4, and so on. This yields a simple algorithm for the conversion of 
decimal input to a binary number. During the process the exponent half of the processor is adjusting 
the exponent of the final floating-point result (therefore the constant 13 in the exponent ALU, which 
corresponds to  (see decimal-binary conversion algorithm further down). 
Fig. 13 shows the spatial distribution of the different elements of the processor datapath for the 
mantissa part. All the shifters have been allocated in different layers of the twelve constituting the 
leftmost module of the machine. The registers Bf and Bg come from the right side, directly from 
memory (layers 5 and 7). The result Be is fed back to memory crossing through level 8. The bits of the 
registers Ba, Bb, and Be are stored in vertical rods (only one bit is shown in this cross-section of the 
processor). The ALU is distributed in two mechanical stacks. Level 1 and 2 compute the AND and XOR 
of the individual bits in Ba and Bb. The results are passed to the right, where the carry-bits and the 
final XOR is computed and stored in Be. The result Be can go back to be stored in memory, or can be 
shifted in all the different ways shown, being fed back to Ba or Bb, as desired. Some circuits seem 
redundant (there are two ways of loading Be into Ba, for example), but they represent alternatives. 
Level 12 loads Be into Ba unconditionally, level 9 only if the exponent Ae is zero. The boxes marked 
green in the diagram are empty layers, where no computation takes place and mechanical 
components can pass through. The box around the bars Bf and Bf’ contains the shifter for Bf needed 
for multiplication (where each bit of Bf is read one after the other, starting from the lowest binary 
power).  
 

 
Fig. 14: Communication betwen the exponent and the mantissa ALUs. 

 
Now you can picture the computational stream in this machine: data flows from the registers F and G 
into the machine, filling the A and B register pairs. A single addition or sequences of 
additions/subtractions (for multiplication or for division) are performed. Partial results are recycled 
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in the A and B registers until the result is complete. The final result is then loaded in register F and a 
new computation can be started again. 
 
7 The arithmetical instructions 
 
As explained above, the Z1 could perform the four basic arithmetical operations. In the tables 
discussed below, the convention has been used of representing a binary one with the letter “L”. The 
tables display the sequence of microinstructions needed for each operation and how it affects the 
dataflow between the registers in the processor. One table summarizes addition and subtraction 
(using two’s complement), one table summarizes multiplication, and one table is for division. There is 
also one table for each of the two I/O operations: decimal-binary and binary-decimal conversion. The 
tables are divided into Part A for the exponent, and part B for the mantissa. The registers Aa, Ab, Ba, 
and BB are loaded as shown in each row of a table. The phase of the operation is given by the column 
labeled “Ph”. Conditions can trigger or inhibit an operation from starting. If a row is executed, 
condition bits can be set, or the next phase (Ph) can be computed by the incrementer. 
 
Addition/Subtraction 
 
The table of microinstructions below covers both the case of an addition of numbers, as well as a 
subtraction. The main problem for both operations is to scale the two numbers to be 
added/subtracted so that the binary exponent is the same. Assume that the numbers  and 

 are to be added. If  the two mantissas can be added immediately. If  then the 
smaller number is rewritten as . The first multiplication is equivalent to shifting the 
mantissa  by (a-b) places to the right (making the mantissa smaller). Let us call . 
The two mantissas to be added are now  and . The common binary exponent is . A similar 
procedure is used in case that . 
 

 
Fig. 15: The microinstructions for addition and subtraction. An addition is finished in 5 cycles, a subtraction in 6. 
Once the numbers have been aligned, condition bit S0 is tested (cycle 4). If S0 is one, an addition of the 
mantissas is performed. If S0 is zero, a subtraction of the mantissas takes place in the same cycle. 
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In the table (Fig. 15), the maximum binary exponent of the two numbers is found first, and the 
mantissa of the smaller number is shifted to the right, as many places as necessary until the two 
binary exponents are equal. The actual addition starts in cycle 4 and is performed in just one cycle by 
the ALU. In cycle 5, it is tested if the new result mantissa is normalized, and if not, it is shifted to 
normalize it. It could happen (after a subtraction) that the result mantissa is negative in which case 
the result is negated to make it positive. This change of sign is written down in the condition bit S3, in 
order to make the necessary adjustment to the sign of the final result. At the end, the result is 
normalized. 
 
The sign unit near the tape reader (see Fig. 5, Block 16) computes in advance the sign of the result 
and the type of operation. If we assume that the mantissas x and y are positive, then we have the 
following four cases for addition and subtraction (after having distributed the signs). We call the 
result z: 
1)  z = +x +y 
2)  z=  +x -y 
3)  z=  -x +y 
4)  z=  -x –y 
The cases (1) and (4) can be handled with an addition in the ALU. In case (1) the result will be 
positive. In case (4) it will be negative. Cases (2) and (3) require a subtraction.  The sign of the 
subtraction is computed in phase 5 (Fig. 14). 
 
An addition runs in the following steps: 
 

- Determine difference  of  exponents in the exponent unit, 
- Select largest exponent, 
- Shift mantissa of the smaller number D times to the left, 
- Add the mantissas, 
- Normalize the result, 
- The sign of the result is the sign of both arguments. 

 
A subtraction runs in the following steps: 
 

- Determine difference D of  exponents in the exponent unit, 
- Select largest exponent, 
- Shift mantissa of the smaller number D times to the left, 
- Subtract the mantissas, 
- Normalize the result, 
- The sign of the result is the sign of the largest number (in absolute value). 

 
The final sign of the result is negotiated with the sign unit, which has a preliminary sign for the 
operation. 
 
Multiplication 
 
For a multiplication, first the exponents of the two numbers are added in cycle 0 (criterion 21, 
exponent part). Then 17 cycles are used to examine every bit of the mantissa in Bf, starting from the 
lowest power, all the way to the highest binary power in the mantissa (from -16 to 0). The register Bf 
is shifted to the right once in every step. The bit mm contains the previously shifted-out bit at 
position -16. If the shifted-out bit is 1, then Bg is added to the partial result (which has been shifted 
previously one position to the right), otherwise zero is added. This algorithm computes therefore the 
result 
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If the mantissa after the multiplication is larger or equal than 2, then the result is normalized in cycle 
18 by shifting one position to the right. Cycle 19 puts the final result in the data bus. 
 

 
Fig. 16: The microinstructions for multiplication. The multiplier-mantissa Bf is stored in a shift register (shift 
right). The multiplicand-mantissa is stored in register Bg. 
 
Division 
 
The division algorithm takes 21 cycles and is based on so-called “non-restoring floating point 
division”. The bits of the quotient are computed one by one, starting from the highest order bit and 
moving to the lower-order bits successively. 
 
First the difference of the exponents is computed in cycle 0, and then the division of the mantissas is 
executed. The divisor mantissa has been stored in Register Bg and the dividend mantissa in register 
Bf. The remainder is initialized to Bf in cycle 0. In each cycle thereafter, the divisor is subtracted from 
the remainder. If the result is positive, the corresponding bit in the mantissa of the result is set to 
one. If the result is negative, the bit in the result mantissa is set to zero. The result bits are computed 
one after the other, from bit zero to bit -16. There is a mechanism in the Z1 for setting the bits of 
register Bf one after the other, as needed. 
If the remainder becomes negative, there are two possible strategies for continuing. In “restoring 
division” the divisor D is added back to the remainder (R-D), in order to come back to the positive 
remainder R. Then the remainder is shifted one position to the left (which is equivalent to shifting 
the divisor to the right) and the algorithm continues. In “non-restoring division”, the remainder (R-D) 
is shifted one position to the left and then the divisor D is added. Since in the previous step (R-D) was 
negative, the shift to the left transforms this quantity in (2R-2D). If we now add the divisor, we obtain 
(2R-D), which is the subtraction of D from the shifted positive R, as we would like to have in the next 
step of the division algorithm. The algorithm can continue in this manner until the remainder 
becomes positive, and then we continue by subtracting again the divisor D. In the table below  
refers to the carry bit for the binary power at position 2. If this bit is set, the result of the addition 
was negative (in two’s-complement arithmetic). 
Non-restoring division is a very elegant way of computing the quotient of two floating-point 
mantissas, since the restoring step (one additional cycle) is avoided.  
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Fig. 17: The microinstructions for division. The multiplier-mantissa in Bf is pushed bit by bit in a shift register 
(shift left). The multiplicand-mantissa is kept in register Bg. 
 
Somewhat puzzling is the fact that the Z3 tested first if the subtraction of Ba and Bb could become 
negative, during a division, in which case the subtraction was “undone” by using a shortcut bus from 
Ba to Be (eliminating the result of the subtraction). This extra hardware was not used in the 
reconstructed Z1 and the non-restoring algorithm seems more elegant than the solution used in the 
Z3. 
 
 
8 Input and Output 
 
The input console consists of four columns of ten small plates each. In each column (called Za3, Za2, 
Za1 and Za0, in that order, from left to right) the operator can pull out any of the digits 0 to 9. He or 
she can thus enter any decimal number of four digits using the four columns. Pulling a digit plate just 
generates its binary equivalent in the input console (using four bits). The input console is therefore 
just a four by ten table of the ten binary equivalents of the digits 0 to 9. 
The microcontroller of the Z1 takes then care of passing each decimal digit Za3, Za2, Za1 and Za0 to 
the datapath through register Ba (at position  corresponding to the power ). Za3 is 
entered first (in register Ba) and then a multiplication by ten takes place. Digit Za2 is next, and 
another multiplication by ten ensues. This is repeated for all four digits. The binary equivalent of the 
four decimal digits is contained in the Be after cycle 7. In cycle 8 the mantissa is normalized, if 
needed. The constant 13 (LL0L in binary) is added once to the exponent (phase 7) in order to account 
for the fact that the digits are entered at the mantissa bit -13. 
 
The decimal exponent of the number is set using a lever. In cycle 9 as many multiplications with the 
factor ten are performed, as indicated by the position of the lever for the decimal exponent. 
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Fig. 18: The microinstructions for decimal-binary conversion. Four decimal digits are entered through a 
mechanical device. 
 
 
The table in Fig. 19 shows how to transform a binary number contained in register Bf to a decimal 
number to be shown in the decimal output panel. 
 
To avoid dealing with negative decimal exponents, the number in register Bf is first multiplied by 

 (Zuse limited the operating range of the machine to handle only numbers larger than  as 
results, although partial results in the ALU could be smaller than this). This happens after phase 1. 
This multiplication is handled by the multiplication operation in the Z1 and the decimal-binary 
conversion stays “suspended” during the cycles that the multiplication needs. 
 
 

 
Fig. 19: The microinstructions for binary-decimal  conversion. Four decimal digits are displayed in a mechanical 
device. 
 
Afterwards, the mantissa is shifted two places to the right (in order to set the binary point so that to 
the left of it we can now have four bits). The mantissa is shifted until the exponent is positive and 
then three multiplications by ten ensue. After every multiplication the integer part of the mantissa is 
copied, erased from the mantissa, and the copy (four bits) is transformed into a decimal digit using a 
table (that is the 2B’-8B’ operation in phase 4 to 7). Every decimal digit is shown in the output panel 
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(starting with the highest order decimal digit). Every time a multiplication by ten is performed, the 
exponent arrow in the decimal display displaces one place to the left. 
 

9 Conclusions  

The original Z1 was destroyed during an allied bombing raid flown in December 1943 over Berlin. It is 
impossible to decide today if the original Z1 was identical to the reconstructed Z1. The few 
photographs that survived show that the original was bulkier and had a less “regular” form. Here we 
can only take Zuse at his word. However, I think that he had no real reason to consciously 
“embellish” the original machine through the reconstruction. Memory can be a tricky fellow though. 
The few notes Zuse scribbled between 1935 and 1938 seem to be consistent with the later 
reconstruction. The Z3 was finished in 1941, and according to Zuse, it was very similar in design. 

Siemens (the company that acquired Zuse’s computer company)  financed the reconstruction of the 
Z1 in the 1980s. Zuse did all the construction work at his home, having two students assisting him. 
When the Z1 was finished, part of the wall in the upper floor of Zuse’s home had to be removed, so 
that a large crane could lift the machine for its transportation to Berlin. 

The reconstructed Z1 is a very elegant computer, consisting of thousands of components but not one 
too many. It would have been possible to use only two shifters at the output of the mantissa ALU (a 
shift by one bit to the left, and one bit to the right), but the selection of shifters made by Zuse speeds 
up the basic arithmetical operations significantly, at a low cost in components. I find the processor of 
the Z1 rather more elegant than the processor of the Z3, since it is more compact and 
“fundamental”. It is as if when Zuse moved to telephone relays, the simpler and more reliable 
components allowed him to be “profligate” with the size of the CPU. The same happened years after 
the Z3, when the Z4 was finished. The Z4 was just a larger Z3 with a larger instruction set, but the 
computer architecture was roughly the same, even though the Z4 had more instructions. The 
mechanical Z1 never worked consistently and Zuse himself later called the mechanical realization “a 
dead end”. He used to joke that the 1989 reconstruction of the Z1 was quite accurate, because the 
original was not reliable, and neither the reconstruction. Curiously, the mechanical memory design 
was sufficiently dependable to use it again for the Z4, as a way of saving telephone relays. The 
mechanical memory of the Z4 was operational from 1950 to 1955 in Switzerland, where the machine 
was installed at the ETH Zürich [7]. 

What I find most surprising is how the young Konrad Zuse could come to such an elegant design for a 
computing engine. Whereas the ENIAC, or Mark I teams in the US consisted of seasoned scientists 
and electronic experts, Zuse was working in isolation and without real previous experience. From the 
architectural point of view, we compute today as Zuse did in 1938, not as the ENIAC did in 1945 [8]. 
More elegant architectures were only introduced later with the EDVAC report and the bit-serial 
machines developed by von Neumann and Turing. John von Neumann lived from 1926 to 1929 in 
Berlin and was the youngest Lecturer (Privatdozent) at the University of Berlin. Konrad Zuse and von 
Neumann may have crossed paths inadvertently during those years. So much could have happened 
in Berlin before madness took over and a dark night fell over Germany. 
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Fig. 20: Sketch of one of Zuse’s early designs for a Z1 reconstruction. Undated. 
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