Lec24 IAM550 J. Raeder 11/21/2019 Differential equations, Linear systems

Announcements:

- Final: in-class final, $2 \mathrm{~h} \rightarrow$ one as originally scheduled, Tuesday $12 / 17$ 10:30-12:30, the other one in the week $12 / 10-13$, TBD.
- Remaining schedule:
- lecture today
- lecture Tuesday $12 / 3$ review
- labs week after THX December 3,5
- no more homework

Systems of linear equations: another example

Figure 9.1: An equilateral truss. Joints or nodes are labeled alphabetically, A, B, \ldots and Members (edges) are labeled numerically: $1,2, \ldots$ The forces f_{1} and f_{2} are applied loads and R_{1}, R_{2} and R_{3} are reaction forces applied by the supports.

Gives rise to the following system of linear equations:

$$
\begin{aligned}
.5 T_{1}+T_{2} & =R_{1}=f_{1} \\
.866 T_{1} & =-R_{2}=-.433 f_{1}-.5 f_{2} \\
-.5 T_{1}+.5 T_{3}+T_{4} & =-f_{1} \\
.866 T_{1}+.866 T_{3} & =0 \\
-T_{2}-.5 T_{3}+.5 T_{5}+T_{6} & =0 \\
.866 T_{3}+.866 T_{5} & =f_{2} \\
-T_{4}-.5 T_{5}+.5 T_{7} & =0,
\end{aligned}
$$

Or in matrix form:

$$
\left(\begin{array}{ccccccc|c}
.5 & 1 & 0 & 0 & 0 & 0 & 0 & f_{1} \\
.866 & 0 & 0 & 0 & 0 & 0 & 0 & -.433 f_{1}-.5 f_{2} \\
-.5 & 0 & .5 & 1 & 0 & 0 & 0 & -f_{1} \\
.866 & 0 & .866 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & -.5 & 0 & .5 & 1 & 0 & 0 \\
0 & 0 & .866 & 0 & .866 & 0 & 0 & f_{2} \\
0 & 0 & 0 & -1 & -.5 & 0 & .5 & 0
\end{array}\right) .
$$

Obviously, this would not be easy to solve by hand.

Solution procedure: Gauss Elimination

Basic rules: The following does not change the solution:

1. Multiplying any equation with a constant
2. Adding 2 equations
3. Swapping equations

Basic idea:

1. Elimination: make the lower triangle below the diagonal zero by multiplying and adding. Column by column downward, starting from first column.
2. Back substitution: Now solve for equations from bottom to top.

Example. Do on the board, but only w/matrix. Also, avoid fractions.

System of equations	Row operations	Augmented matrix
$\begin{aligned} 2 x+y-z & =8 \\ -3 x-y+2 z & =-11 \\ -2 x+y+2 z & =-3 \end{aligned}$		$\left[\begin{array}{rrr\|r}2 & 1 & -1 & 8 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3\end{array}\right]$
$\begin{aligned} 2 x+y-z & =8 \\ \frac{1}{2} y+\frac{1}{2} z & =1 \\ 2 y+\quad z & =5 \end{aligned}$	$\begin{aligned} L_{2}+\frac{3}{2} L_{1} & \rightarrow L_{2} \\ L_{3}+L_{1} & \rightarrow L_{3} \end{aligned}$	$\left[\begin{array}{ccc\|c}2 & 1 & -1 & 8 \\ 0 & \frac{1}{2} & \frac{1}{2} & 1 \\ 0 & 2 & 1 & 5\end{array}\right]$
$\begin{aligned} 2 x+y-z & =8 \\ \frac{1}{2} y+\frac{1}{2} z & =1 \\ -z & =1 \end{aligned}$	$L_{3}+-4 L_{2} \rightarrow L_{3}$	$\left[\begin{array}{rrr\|r}2 & 1 & -1 & 8 \\ 0 & \frac{1}{2} & \frac{1}{2} & 1 \\ 0 & 0 & -1 & 1\end{array}\right]$
The matrix is now in echelon form (also called triangular form)		
$\begin{aligned} 2 x+y & =7 \\ \frac{1}{2} y & =\frac{3}{2} \\ -z & =1 \end{aligned}$	$\begin{aligned} L_{2}+\frac{1}{2} L_{3} & \rightarrow L_{2} \\ L_{1}-L_{3} & \rightarrow L_{1} \end{aligned}$	$\left[\begin{array}{rrr\|r}2 & 1 & 0 & 7 \\ 0 & \frac{1}{2} & 0 & \frac{3}{2} \\ 0 & 0 & -1 & 1\end{array}\right]$
$\begin{aligned} 2 x+y & =7 \\ y & =3 \\ z & =-1 \end{aligned}$	$\begin{aligned} 2 L_{2} & \rightarrow L_{2} \\ -L_{3} & \rightarrow L_{3} \end{aligned}$	$\left[\begin{array}{rrr\|r}2 & 1 & 0 & 7 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1\end{array}\right]$
$\begin{aligned} x & =2 \\ y & =3 \\ z & =-1 \end{aligned}$	$\begin{aligned} L_{1}-L_{2} & \rightarrow L_{1} \\ \frac{1}{2} L_{1} & \rightarrow L_{1} \end{aligned}$	$\left[\begin{array}{rrr\|r}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1\end{array}\right]$

Code: Live!

