Lec23 IAM550 J. Raeder 11/19/2019 Differential equations, Linear systems

Announcements:

• Final: TBD

All on the blackboard or real time MATLAB

Recap: ODE, Euler forward method

Demonstrate: Euler forward instability

Better methods:

- Euler backward \rightarrow stable, but implicit
- Predictor Corrector \rightarrow similar stability, but more accurate, show graphically

$$y'=f(t,y), \hspace{1em} y(t_0)=y_0$$

do one Euler forward step:

$${ ilde y}_{i+1} = y_i + hf(t_i,y_i)$$

and average with an Euler backward step, using the predicted values:

$$y_{i+1} = y_i + rac{1}{2}hig(f(t_i,y_i) + f(t_{i+1}, ilde y_{i+1})ig).$$

Alternatively, make a half forward step, then evaluate slope at predicted point (second order Runge-Kutta):

$$y_{n+1} = y_n + hf\left(t_n + rac{1}{2}h, y_n + rac{1}{2}hf(t_n, y_n)
ight).$$
 $ightarrow$ explain on bb.

Most popular: 4th order Runge-Kutta, a.k.a. RK4 (for reference):

$$egin{aligned} &k_1 = h \; f(t_n, y_n), \ &k_2 = h \; f\left(t_n + rac{h}{2}, y_n + rac{k_1}{2}
ight), \ &k_3 = h \; f\left(t_n + rac{h}{2}, y_n + rac{k_2}{2}
ight), \ &k_4 = h \; f\left(t_n + h, y_n + k_3
ight). \end{aligned}$$

$$egin{aligned} y_{n+1} &= y_n + rac{1}{6} \left(k_1 + 2k_2 + 2k_3 + k_4
ight), \ t_{n+1} &= t_n + h \end{aligned}$$

 \rightarrow very efficient and accurate, easy to program, only needs 4 function evaluations for every step.

Systems of linear equations:

Example: resistivity network:

Using Kirchhoff's laws:

- 1. The sum of voltages around any loop is zero.
- 2. The sum of currents at any junction is zero.

Applying the voltage law to the left-hand loop, we get

$$V_1 - I_1 R_1 - I_3 R_3 = 0$$

From the right-hand loop, we get

$$V_2 + I_2 R_2 - I_3 R_3 = 0$$

We need one more equation, for which we can use the junction at top center and the current law:

$$I_1 - I_2 - I_3 = 0$$

Can be written as a system of linear equations for the currents:

Or more compact in matrix form:

$$egin{bmatrix} R_1 & 0 & R_3 \ 0 & -R_2 & R_3 \ 1 & -1 & -1 \end{bmatrix} egin{bmatrix} I_1 \ I_2 \ I_3 \end{bmatrix} = egin{bmatrix} V_1 \ V_2 \ 0 \end{bmatrix}$$

Solution procedure: Gauss Elimination

Basic rules: The following does not change the solution:

- 1. Multiplying any equation with a constant
- 2. Adding 2 equations
- 3. Swapping equations

Basic idea:

- 1. Elimination: make the lower triangle below the diagonal zero by multiplying and adding. Column by column downward, starting from first column.
- 2. Back substitution: Now solve for equations from bottom to top.

Example. Do on the board, but only w/matrix. Also, avoid fractions.

System of equations	Row operations	Augmented matrix
$2x+y-\ z= 8\ -3x-y+2z=-11\ -2x+y+2z= -3$		$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$egin{array}{rcl} 2x+y-z=8\ rac{1}{2}y+rac{1}{2}z=1\ 2y+z=5 \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\left[\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$2x+y-z=8\ rac{1}{2}y+rac{1}{2}z=1\ -z=1$	$L_3+-4L_2 ightarrow L_3$	$\left[\begin{array}{ccc c} 2 & 1 & -1 & 8 \\ 0 & \frac{1}{2} & \frac{1}{2} & 1 \\ 0 & 0 & -1 & 1 \end{array}\right]$
The matrix is now in echelon form (also called triangular form)		
$egin{array}{rcl} 2x+y&=7\ rac{1}{2}y&=rac{3}{2}\ -z=1 \end{array}$	$egin{aligned} L_2+rac{1}{2}L_3 & ightarrow L_2\ L_1-L_3 & ightarrow L_1 \end{aligned}$	$\left[\begin{array}{ccccc} 2 & 1 & 0 & 7 \\ 0 & \frac{1}{2} & 0 & \frac{3}{2} \\ 0 & 0 & -1 & 1 \end{array}\right]$
$egin{array}{rcl} 2x+y&=&7\ y&=&3\ z=-1 \end{array}$	$2L_2 ightarrow L_2 \ -L_3 ightarrow L_3$	$\left[\begin{array}{cccc} 2 & 1 & 0 & 7 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{array} \right]$
$egin{array}{cccc} x&=&2\ y&=&3\ z=-1 \end{array}$	$egin{array}{c} L_1-L_2 ightarrow L_1 \ rac{1}{2}L_1 ightarrow L_1 \end{array}$	$\left[\begin{array}{c cccc} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{array} \right]$

Code: next time