Numerical Integration (Quadrature)

IAM 550, Lec14, 2019-10-10, J. Raeder

From Wikipedia: Riemann was the second of six children, shy and suffering from numerous nervous breakdowns. Riemann exhibited exceptional mathematical skills, such as calculation abilities, from an early age but suffered from timidity and a fear of speaking in public.

Announcements

- Midterm exam:
- 17 Oct, 2:10-3:20 (70 minutes)
- N108 (A-O) and W114 (P-Z)
- 115 points total, points over 100 carry over to final
- Material up to and including Lecture 13
- Students with SAS letter come see me
- Homework 2 will be on the web page by Friday COB. Due 2 weeks hence.

Numerical Integration

Numerical Integration

Right endpoint

Numerical Integration

The simple Riemann sum. Will converge for $N \rightarrow$ Inf, but maybe very slowly.

Numerical Integration

Probably a little better.

A more formal introduction to numerical integration

1. Divide the range of integration into n -1 equal intervals of length:

$$
\frac{b-a}{n-1}
$$

2. Replace $f(x)$ with an $n^{\text {th }}$ order polynomial that is easy to integrate: $\quad f(x) \cong f_{n}(x)=a_{o}+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n}$

A more formal introduction to numerical integration

2. Replace $f(x)$ with an $n^{\text {th }}$ order polynomial that is easy to integrate:

$$
f(x) \cong f_{n}(x)=a_{o}+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n}
$$

If we make sure that these two equal each other at the points x_{i} then we are following the Newton-Cotes rules for quadrature.

Lagrange Approximation

$$
f(x) \cong f_{n}(x)
$$

If we make sure that these two equal each other at the points x_{i} then we are following the Newton-Cotes rules for quadrature.

How do we do this?

What we learned way
back when...

$$
\begin{gathered}
y=y_{o}+m\left(x-x_{o}\right) \\
m=\frac{\left(y_{1}-y_{o}\right)}{\left(x_{1}-x_{o}\right)}
\end{gathered}
$$

$$
\begin{aligned}
& y=P(x)=y_{o}+\left(y_{1}-y_{0}\right) \frac{\left(x-x_{0}\right)}{\left(x_{1}-x_{0}\right)} \\
& \text { s Lagrange would have written: } \\
& =P_{1}(x)=y_{o} \frac{\left(x-x_{1}\right)}{\left(x_{0}-x_{1}\right)}+y_{1} \frac{\left(x-x_{0}\right)}{\left(x_{1}-x_{0}\right)}
\end{aligned}
$$

Lagrange Approximation

Or as Lagrange would have written:

$$
\begin{aligned}
& y=P_{1}(x)=y_{o} \frac{\left(x-x_{1}\right)}{\left(x_{o}-x_{1}\right)}+y_{1} \frac{\left(x-x_{o}\right)}{\left(x_{1}-x_{o}\right)} \\
& L_{1,0}(x)=\frac{\left(x-x_{1}\right)}{\left(x_{o}-x_{1}\right)} \quad L_{1,1}(x)=\frac{\left(x-x_{o}\right)}{\left(x_{1}-x_{o}\right)}
\end{aligned}
$$

Lagrange Approximation

For an $N^{\text {th }}$ degree polynomial approximation that is exact at the points x_{i} :

$$
\begin{gathered}
P_{N}(x)=\sum_{k=0}^{N} y_{k} L_{N, k}(x) \\
L_{N, k}(x)=\frac{\left(x-x_{o}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{N}\right)}{\left(x_{k}-x_{o}\right) \cdots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \cdots\left(x_{k}-x_{N}\right)}
\end{gathered}
$$

So lets try it:

We want to approximate the definite integral:

1. Divide the range of integration into n -1 equal intervals of length:

$$
\frac{b-a}{n-1}
$$

Note that $n=2$ in this example.
2. Replace $f(x)$ with an $n^{\text {th }}$ order Replace $f(x)$ with an $n^{\text {th }}$ order
polynomial that is easy to integrate: $P_{1}(x)=\sum_{k=0}^{1} y_{k} L_{1, k}(x)$.

$$
\begin{aligned}
& L_{1,0}(x)=\frac{\left(x-x_{1}\right)}{\left(x_{o}-x_{1}\right)} \\
& L_{1,1}(x)=\frac{\left(x-x_{o}\right)}{\left(x_{1}-x_{0}\right)}
\end{aligned}
$$

So lets try it:

We want to approximate the definite integral:

So lets try it:

We want to approximate the definite integral:
$f(x)$

$$
\begin{array}{cr}
\int_{a}^{b} f(x) d x & \\
P_{1}(x)=\sum_{k=0}^{1} y_{k} L_{1, k}(x) & \begin{array}{l}
L_{1,0}(x)=\frac{\left(x-x_{1}\right)}{\left(x_{o}-x_{1}\right)} \\
L_{1,1}(x)=\frac{\left(x-x_{o}\right)}{\left(x_{1}-x_{o}\right)}
\end{array}
\end{array}
$$

This is a sum, so we add these two:

$$
y(a) \frac{(b-a)}{2}+y(b) \frac{(b-a)}{2}=\frac{h}{2}[y(a)+y(b)]
$$

This is the Newton-Cotes Formula for $n=2$ a.k.a trapezoidal rule.

This is the area of the trapezoid above.

Error in the Trapezoidal Rule

We want to approximate the definite integral:

$L_{1,0}(x)=\frac{\left(x-x_{1}\right)}{\left(x_{0}-x_{1}\right)}$
$L_{1,1}(x)=\frac{\left(x-x_{0}\right)}{\left(x_{1}-x_{o}\right)}$ $f(x)$
$L_{1,0}(x)=\frac{\left(x-x_{1}\right)}{\left(x_{o}-x_{1}\right)}$
$L_{1,1}(x)=\frac{\left(x-x_{o}\right)}{\left(x_{1}-x_{o}\right)}$

Error in the Trapezoidal Rule

We want to approximate the definite integral:
$f(x)$

$$
\begin{gathered}
\int_{a}^{b} f(x) d x \\
P_{1}(x)=\sum_{k=0}^{1} y_{k} L_{1, k}(x)
\end{gathered}
$$

Example

$$
f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}
$$

Integrate $f(x)$ from $a=0.1$ to $b=0.8$

True answer: 1.5471

$$
\begin{gathered}
f(0.1)=1.289 \\
f(0.8)=0.232 \\
h=0.7
\end{gathered}
$$

Trapezoid rule estimate: $h / 2 \star[f(0.1)+f(0.8)]=0.5324$

$$
\begin{gathered}
E=1.5471-0.5324=1.015 \\
\text { Percent error }=65.6 \%
\end{gathered}
$$

Example

$$
f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}
$$

Integrate $f(x)$ from $a=0.1$ to $b=0.8$
A close look at the error

Example

$$
f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}
$$

This suggests the error should be somewhere between -1.7 to 3.7.

If we looked at a much smaller interval (i.e., b-a << 0.7) we'd have a much more accurate answer.

Question: what would the range of errors be if we were using a step size of 0.1 and were integrating from 0.2 to 0.3? What if we were integrating from 0.4 to 0.5 , or 0.6 to 0.7 ?

Composite Trapezoidal Rule

This is exact! But to numerically solve this we could use the trapezoidal rule on each piece.

This is the exact solution:

$$
\int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots+\int_{x_{n-1}}^{x_{n}} f(x) d x
$$

This is the composite trapezoidal rule:

$$
\int_{a}^{b} f(x) d x \cong \frac{h}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]+\frac{h}{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\cdots+\frac{h}{2}\left[f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
$$

This is the composite trapezoidal rule stated a little more compactly (and easier

$$
\int_{a}^{b} f(x) d x \cong \frac{h}{2}\left[f\left(x_{0}\right)+2 \sum_{i=1}^{n-1} f\left(x_{i}\right)+f\left(x_{n}\right)\right]
$$

to program, perhaps):

Error in the Composite Trapezoidal Rule

Recall the error when we used only one trapezoid:

$$
E=-\frac{1}{12} f^{\prime \prime}(\xi)(\mathrm{b}-\mathrm{a})^{3}
$$

If we divide the integral up into n pieces, we sum the individual errors:

$$
E=-\sum_{i=1}^{n} \frac{1}{12} f^{\prime \prime}\left(\xi_{i}\right)\left(\frac{\mathrm{b}-\mathrm{a}}{n}\right)^{3}
$$

Return to the previous example

$$
f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}
$$

Integrate $f(x)$ from $a=0.1$ to $b=0.8$

Return to the previous example

$$
f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}
$$

Integrate $f(x)$ from $a=0.1$ to $b=0.8$

True answer: 1.5471

Simpson's 1/3 Rule

If we add a midpoint to the trapezoidal rule, we can fit a higher-order polynomial.

3 points - Parabola Gives us Simpsons $1 / 3$ Rule

4 points - $3^{\text {rd }}$ order polynomial Gives us Simpsons 3/8 Rule

Recall Lagrange's Approximation

$$
\begin{aligned}
& \qquad P_{N}(x)=\sum_{k=0}^{N} y_{k} L_{N, k}(x) \begin{array}{l}
\text { For simpsons } 1 / 3 \text { rule, } \\
\text { there will be } 3 \text { terms in } \\
\text { this summation. }
\end{array} \\
& L_{N, k}(x)=\frac{\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{N}\right)}{\left(x_{k}-x_{0}\right) \cdots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \cdots\left(x_{k}-x_{N}\right)} \\
& \begin{array}{l}
\text { Note that }\left(x-x_{k}\right) \text { and }\left(x_{k}-x_{k}\right) \text { are } \\
\text { not present here. }
\end{array} \\
& \begin{array}{l}
\text { is the order of } \\
\text { the polynomial }
\end{array}
\end{aligned}
$$

After we figure out the correct form for Lagrange's approximation, we'll integrate it.

Recall Lagrange's Approximation

Simpson's 1/3 Rule

Simpson's 1/3 Rule

$$
\begin{aligned}
& \int_{x_{0}}^{x_{2}} f(x) d x \cong \int_{x_{0}}^{x_{2}}\left[f\left(x_{0}\right) \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}+f\left(x_{1}\right) \frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}\right. \\
&\left.+f\left(x_{2}\right) \frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}\right] d x \\
&= h=\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right] \quad \text { Note the } 1 / 3 \rightarrow \text { rule name } \\
& \sim
\end{aligned}
$$

Error in Simpson's $1 / 3$ Rule

$$
\begin{gathered}
E=-\frac{1}{90} f^{(4)}(\xi) \mathrm{h}^{5} \\
E=-\frac{1}{2880} f^{(4)}(\xi)(\mathrm{b}-\mathrm{a})^{5}
\end{gathered}
$$

The error is zero for cubic polynomials!!

Caution: as before when developed the trapezoidal rule, this error only applies to singlesegment applications of Simpson's $1 / 3$ Rule

Example

$$
f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}
$$

Integrate $f(x)$ from $a=0.1$ to $b=0.8$

True answer: 1.5471

$$
\begin{gathered}
f(0.1)=1.289 \\
f(0.45)=2.935 \\
f(0.8)=0.232 \\
h=0.35
\end{gathered}
$$

Simpsons $1 / 3$ rule estimate: $h / 3^{\star}\left[f(0.1)+4^{\star} f(0.45)+f(0.8)\right]=$ 1.5471
$\mathrm{E}=0$???

Example

$$
f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}
$$

Integrate $f(x)$ from $a=0.1$ to $b=0.7$

True answer: 1.4124

$$
\begin{aligned}
f(0.1) & =1.289 \\
f(0.4) & =2.456 \\
f(0.7) & =2.363 \\
h & =0.3
\end{aligned}
$$

Simpsons $1 / 3$ rule estimate:

$$
h / 3^{\star}\left[f(0.1)+4^{\star} f(0.4)+f(0.7)\right]=
$$ 1.348

$$
\begin{aligned}
& E=0.064 \\
& \% E=4.6 \%
\end{aligned}
$$

Example

$$
f(x)=0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}
$$

Integrate $f(x)$ from $a=0.1$ to $b=0.7$ but use the trapezoidal rule for comparison

True answer: 1.4124

$$
\begin{aligned}
f(0.1) & =1.289 \\
f(0.4) & =2.456 \\
f(0.7) & =2.363 \\
h & =0.3
\end{aligned}
$$

Trapezoidal rule estimate: $h / 2^{\star}\left[f(0.1)+2^{\star} f(0.4)+f(0.7)\right]=$ 1.285

$$
E=0.127
$$

$$
\% E=9.0 \%
$$

Composite Simpson's $1 / 3$ Rule

$$
\int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{2}} f(x) d x+\int_{x_{2}}^{x_{4}} f(x) d x+\cdots+\int_{x_{n-2}}^{x_{n}} f(x) d x
$$

Composite Simpson's 1/3 Rule

$$
\int_{a}^{b} f(x) d x=\int_{x_{0}}^{x_{2}} f(x) d x+\int_{x_{2}}^{x_{4}} f(x) d x+\cdots+\int_{x_{n-2}}^{x_{n}} f(x) d x
$$

$\int_{a}^{b} f(x) d x \cong 2 h \frac{\left[f\left(x_{o}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]}{6}+2 h \frac{\left[f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)\right]}{6}+\cdots$

$$
\begin{gathered}
+2 h \frac{\left[f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]}{6} \\
=\frac{h}{3}\left[f\left(x_{0}\right)+4 \sum_{i=1,3,5}^{n-1} f\left(x_{i}\right)+2 \sum_{i=2,4,6}^{n-2} f\left(x_{i}\right)+f\left(x_{n}\right)\right]
\end{gathered}
$$

Return to Our Example

True answer: 1.4124

Integrate $f(x)$ from $a=0.1$ to $b=0.7$

$$
\left.\begin{array}{l}
f(0.1)=1.289 \quad\} \quad 1 \text { of these } \\
f(0.2)=1.288 \\
f(0.4)=2.456 \\
f(0.6)=3.464
\end{array}\right\} \quad 4 \text { of these }
$$

$$
\left.\begin{array}{l}
f(0.3)=1.607 \\
f(0.5)=3.325
\end{array}\right\} \quad 2 \text { of these }
$$

$$
f(0.7)=2.363\} 1 \text { of these }
$$

$$
h=0.1
$$

Composite Simpsons $1 / 3$ rule estimate:
1.4116

$$
E=0.0008 \% E=0.06 \%
$$

Return to Our Example

True answer: 1.4124
Integrate $f(x)$ from $a=0.1$ to $b=0.7$

Composite Simpsons $1 / 3$ rule estimate: 1.4116

$$
E=0.0008 \% E=0.06 \%
$$

Trapezoidal Rule estimate with same points: 1.3966 $E=0.0158 \% E=1.12 \%$

Note! If we wanted to integrate to from 0.1 to 0.8, we can't use steps of 0.1 with Simpsons $1 / 3$ rule.

Error in the Composite Simpson's $1 / 3$ Rule

If we divide the integral up into m segments, we sum the individual errors:

$$
E=-\sum_{i=1}^{m} \frac{1}{2880} f^{(4)}\left(\xi_{i}\right)\left(\frac{\mathrm{b}-\mathrm{a}}{2 m}\right)^{5}
$$

If there are n points, then there are $m=(n-1) / 2$ segments

Newton-Cotes Integration Formulas

We've done $1^{\text {st }}$ order Lagrange polynomials (trapezoidal rule) and $2^{\text {nd }}$ order Lagrange polynomials (Simpsons $1 / 3$ rule), and can keep going.

From Chapra, Applied Numerical Methods with MATLAB, $3^{\text {rd }}$ Ed. p. 481
TABLE 19.2 Newton-Cotes closed integration formulas. The formulas are presented in the format of Eq. (19.13) so that the weighting of the data points to estimate the average height is apparent. The step size is given by $h=(b-a) / n$.

Segments (n)	Points	Name	Formula	Truncation Error
1	2	Trapezoidal rule	$(b-a) \frac{f\left(x_{0}\right)+f\left(x_{1}\right)}{2}$	$-(1 / 12) h^{3} f^{\prime \prime}(\xi)$
2	3	Simpson's 1/3 rule	$(b-a) \frac{f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)}{6}$	$-11 / 90 \mid h^{5} f^{(4)}(\xi)$
3	4	Simpson's 3/8 rule	$(b-a) \frac{f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)}{8}$	$-13 / 80] h^{5} f^{(4)}(\xi)$
4	5	Boole's rule	$(b-a) \frac{7 f\left(x_{0}\right)+32 f\left(x_{1}\right)+12 f\left(x_{2}\right)+32 f\left(x_{3}\right)+7 f\left(x_{4}\right)}{90}$	$-18 / 945 \mid h^{7} f^{(6)}(\xi)$
5	6		$(b-a) \frac{19 f\left(x_{0}\right)+75 f\left(x_{1}\right)+50 f\left(x_{2}\right)+50 f\left(x_{3}\right)+75 f\left(x_{1}\right)+19 f\left(x_{5}\right)}{288}$	$-(275 / 12,096) / h^{7} f^{(6)}(\xi)$

Romberg Integration

$$
I=\hat{I}+E
$$

$$
E=-\sum_{i=1}^{n} \frac{1}{12} f^{\prime \prime}\left(\xi_{i}\right)\left(\frac{\mathrm{b}-\mathrm{a}}{n}\right)^{3} \approx-\frac{(\mathrm{b}-\mathrm{a})^{3}}{12 n^{2}} \overline{f^{\prime \prime}}=\frac{(\mathrm{b}-\mathrm{a})}{12} h^{2} \overline{f^{\prime \prime}}
$$

Romberg Integration

Estimate 1, with step size h1:

$$
I=\hat{I}\left(h_{1}\right)+E\left(h_{1}\right) \quad I=\hat{I}\left(h_{2}\right)+E\left(h_{2}\right)
$$

Estimate 2, with step size h2:

What if I made two separate estimates, with different step sizes (recall Richardson extrapolation)?

$$
\hat{I}\left(h_{1}\right)+E\left(h_{1}\right)=\hat{I}\left(h_{2}\right)+E\left(h_{2}\right)
$$

Each estimate will have an error that depends similarly on the $2^{\text {nd }}$ derivative but with different step sizes:

$$
\begin{gathered}
E_{1}=\frac{(\mathrm{b}-\mathrm{a})}{12} h_{1}^{2} \overline{f^{\prime \prime}} \quad E_{2}=\frac{(\mathrm{b}-\mathrm{a})}{12} h_{2}^{2} \overline{f^{\prime \prime}} \\
\frac{E_{1}}{E_{2}} \cong \frac{h_{1}^{2}}{h_{2}^{2}}
\end{gathered}
$$

Romberg Integration

What if I made two separate estimates, with different step sizes (known as Richardson extrapolation)

Solve for E2 and
substitute: $\quad \frac{E_{1}}{E_{2}} \cong \frac{h_{1}^{2}}{h_{2}^{2}}$
$\hat{I}\left(h_{1}\right)+E\left(h_{2}\right) \frac{h_{1}^{2}}{h_{2}^{2}}=\hat{I}\left(h_{2}\right)+E\left(h_{2}\right)$

Solve for E2

$$
E\left(h_{2}\right)=\frac{\hat{I}\left(h_{1}\right)-\hat{I}\left(h_{2}\right)}{\left(1-\frac{h_{1}^{2}}{h_{2}^{2}}\right)}
$$

We know (or can calculate) all of these terms!

Romberg Integration

What if I made two separate estimates, with different step sizes (Richardson extrapolation)

We can now use our estimate of the error to improve our estimate of the integral:

$$
\begin{aligned}
& I=\hat{I}\left(h_{2}\right)+E\left(h_{2}\right)=\hat{I}\left(h_{2}\right)+\frac{\hat{I}\left(h_{1}\right)-\hat{I}\left(h_{2}\right)}{\left(1-\frac{h_{1}^{2}}{h_{2}^{2}}\right)} \\
& E\left(h_{2}\right)=\frac{\hat{I}\left(h_{1}\right)-\hat{I}\left(h_{2}\right)}{\left(1-\frac{h_{1}^{2}}{h_{2}^{2}}\right)}
\end{aligned}
$$

If h2 $=$ h1/2:

$$
I=\frac{4}{3} \hat{I}\left(h_{1}\right)-\frac{1}{3} \hat{I}\left(h_{2}\right)
$$

This turns out to be $O\left(h^{4}\right)$.

With $h 2=h 1 / 2$ you can reuse the $f\left(x_{i}\right)$ from I_{2} to save computation time.

Comparison: Trapezoidal, Simpsons 1/3, Romberg

Integral Result: 1.3966

Integral Result: 1.4116

Integral Result: 1.41116

True Answer: 1.4124

The Typical Romberg Integration Scheme Uses Iterations:

Trap for step size: $(b-a) \longrightarrow$
Trap for step size: $(b-a) / 2$
Result of iteration 1

Trap for step size: (b-a)
Trap for step size: ($b-a$)/2 Trap for step size: $(b-a) / 4$

Trap for step size: $(b-a)$
Trap for step size: $(b-a) / 2$
Trap for step size: (b-a)/4
Result of iteration 1
Intermediate iteration $2 \rightarrow$ Result of iteration 2 Intermediate iteration 2 Trap for step size: $(b-a) / 8$

Result of iteration 1
Intermediate iteration $2 \longrightarrow \begin{aligned} & \text { Result of iteration } 2 \\ & \text { Intermediate iteration } 3\end{aligned}$ Ans.

Overkill for us, but MATLAB does something like this with the integrate() function. Romberg has the advantage that it provides an error estimate without knowing the true integral. You can specify a precision and stop the iterations when it is reached.

Take-home messages

- We have several methods for doing numerical integration
- Left/right-end rule
- Trapezoidal Rule
- Simpsons 1/3 Rule
- Romberg
- Other extended methods (lots of them, Gauss-Legendre)
- In all cases: small step size helps!
- If you have $f()$ given by data, trapezoidal is good enough, because your data have errors to begin with.
- You should spend time with these notes, working through the examples and making sure you understand the different methods.

