Lecll TAMSS0 J. Raeder 10/01/2019 Structured programming, functions

e Rehash loops, assignments in vectors.
e Rehash sprintf(), print formats, construct file names.

e For larger projects writing a single code (unstructured coding) in a single file becomes
impractical and error prone = think of sin() function. Multiple arguments 2 atan2(y,x).

e Functions allow to break the code into subtasks that can be separately programmed and tested.

e Functions also allow to avoid repeated code. Example: built-in functions like sin(), cos(), exp(),
log()’ o

e We already used inline functions (in Fortran statement functions, in C #define macros) but they
are basically limited to one-liners.

e Unfortunately, MATLAB handles functions in an awkward way (still better than no functions).

e To start with, define functions within a main script.

X = 1:10;

n = length(x);

avg = mymean(x,n);
med = mymedian(x,n);

function a = mymean(v,n)
% MYMEAN Example of a local function.

a = sum(v)/n;
end

function m = mymedian(v,n)
% MYMEDIAN Another example of a local function.

w = sort(v);
if rem(n,2) == 1 % remainder
m=w((n + 1)/2);
else
m= (w(n/2) + w(n/2 + 1))/2;
end
end

e A function is declared by the function keyword.

e The function ends either with end, another function definition, or the end of the file. Using
end is preferred.

e The function may or may not have a return value. (with no return value: C: void funcname(:--);
Fortran: subroutine funcname(:-+)).

e A function may or may not (not makes not so much sense in MATLAB) have arguments.

¢ In the function itself the arguments are called dummy arguments.

e When the function is called they are called actual arguments.

Matlab passes arguments by value: the actual arguments are copied into the dummy
arguments. Thus, when the dummy arguments are modified, the actual arguments are not
modified.

The other method is called ‘passing arguments by reference’ or ‘passing by pointer’ . In
that case, nothing is copied, but only a memory reference is passed and changing a value in the
function will also change the value in the calling program (which is also a way ro return results)
The actual arguments and the dummy arguments can have different names, but they
must match in type.

There can be fewer actual arguments than dummy arguments, but unmatched
arguments better not be used. There cannot be more actual than dummy arguments.

The number of arguments in the calling statement is known by nargin and nargout.
Multiple values can be returned:

% 1in calling program:
[c_abs c_emm] = cross(1830);

function [cross_abs, cross _emm] = cross(lambda)

$This function is used to calculate the absorption cross section
%and emmision cross section for the given wavelength lambda

$Note that the unit of the lambda here should be nm

nargin

nargout % number of in/out arguments

load absorption_cross.txt;

load emission_cross.txt;

% interpolate from tables, see

% https://www.mathworks.com/help/matlab/ref/interpl.html
cross_abs=interpl(absorption cross(:,1l),absorption cross(:,2),lam
bda, 'spline')*1le-24;

cross_emm=interpl(emission cross(:,1l),emission cross(:,2),lambda,
'spline’')*le-24;

end

The return arguments are a list. Like with the actual/dummy arguments, the names do not need to
match, but the types.

Return arguments are also passed by value, that is, copied from the function back to the calling
program.

The variables in the function are 1ocal, that is, a variable with the same name in the function as
in the main program will not be changed in one unit if it is changed in another. Fortran, C: local;
Perl: always global, unless specified otherwise.

Next time: global vars, persistent vars, function m-files, recursion, hierarchy of functions,
programming with functions

