
	

1	
	

Lec11 IAM550 J. Raeder 10/01/2019 Structured programming, functions

• Rehash loops, assignments in vectors.
• Rehash sprintf(), print formats, construct file names.

• For larger projects writing a single code (unstructured coding) in a single file becomes

impractical and error prone à think of sin() function. Multiple arguments à atan2(y,x).
• Functions allow to break the code into subtasks that can be separately programmed and tested.
• Functions also allow to avoid repeated code. Example: built-in functions like sin(), cos(), exp(),

log(), …
• We already used inline functions (in Fortran statement functions, in C #define macros) but they

are basically limited to one-liners.
• Unfortunately, MATLAB handles functions in an awkward way (still better than no functions).
• To start with, define functions within a main script.

x = 1:10;
n = length(x);
avg = mymean(x,n);
med = mymedian(x,n);

function a = mymean(v,n)
% MYMEAN Example of a local function.

 a = sum(v)/n;
end

function m = mymedian(v,n)
% MYMEDIAN Another example of a local function.

 w = sort(v);
 if rem(n,2) == 1 % remainder
 m = w((n + 1)/2);
 else
 m = (w(n/2) + w(n/2 + 1))/2;
 end
end

• A function is declared by the function keyword.
• The function ends either with end, another function definition, or the end of the file. Using

end is preferred.
• The function may or may not have a return value. (with no return value: C: void funcname(…);

Fortran: subroutine funcname(…)).
• A function may or may not (not makes not so much sense in MATLAB) have arguments.
• In the function itself the arguments are called dummy arguments.
• When the function is called they are called actual arguments.

	

2	
	

• Matlab passes arguments by value: the actual arguments are copied into the dummy
arguments. Thus, when the dummy arguments are modified, the actual arguments are not
modified.

• The other method is called ‘passing arguments by reference’or ‘passing by pointer’. In
that case, nothing is copied, but only a memory reference is passed and changing a value in the
function will also change the value in the calling program (which is also a way ro return results)

• The actual arguments and the dummy arguments can have different names, but they
must match in type.

• There can be fewer actual arguments than dummy arguments, but unmatched
arguments better not be used. There cannot be more actual than dummy arguments.

• The number of arguments in the calling statement is known by nargin and nargout.
• Multiple values can be returned:

% in calling program:
[c_abs c_emm] = cross(1830);

function [cross_abs, cross_emm] = cross(lambda)
%This function is used to calculate the absorption cross section
%and emmision cross section for the given wavelength lambda
%Note that the unit of the lambda here should be nm
nargin
nargout % number of in/out arguments
load absorption_cross.txt;
load emission_cross.txt;
% interpolate from tables, see
% https://www.mathworks.com/help/matlab/ref/interp1.html
cross_abs=interp1(absorption_cross(:,1),absorption_cross(:,2),lam
bda,'spline')*1e-24;
cross_emm=interp1(emission_cross(:,1),emission_cross(:,2),lambda,
'spline')*1e-24;
end

• The return arguments are a list. Like with the actual/dummy arguments, the names do not need to
match, but the types.

• Return arguments are also passed by value, that is, copied from the function back to the calling
program.

• The variables in the function are local, that is, a variable with the same name in the function as
in the main program will not be changed in one unit if it is changed in another. Fortran, C: local;
Perl: always global, unless specified otherwise.

• Next time: global vars, persistent vars, function m-files, recursion, hierarchy of functions,
programming with functions

