

Mass on a string: where are the resonance frequencies (we'd like to stay away from there)?

Mass-loaded string

Note: the wave speed c is for a wave on a string under tension, like a guitar string, $C^{2}=T / m u$, where T is the tension and muthe linear mass density

Mass-loaded string

This system has natural modes, which are excited at the natural frequencies:

Mode	Mode	Mode
1	2	3

The frequencies, f, that satisfy this equation are the natural equations. But how do we find them?

$$
\cot \left(\frac{2 \pi f}{c} L\right)
$$

$$
\frac{2 \pi f}{c} \frac{m}{m_{s}} L
$$

Mass-loaded string

The frequencies, f, that

$$
\cot \left(\frac{2 \pi f}{c} L\right)=\frac{2 \pi f}{c} \frac{m}{m_{s}} L
$$

satisfy this equation are the natural equations. But how do we find them?

$$
\cot \left(\frac{2 \pi f}{c} L\right)=\frac{2 \pi f}{c} \frac{m}{m_{s}} L
$$

This is a transcendental equation. How do we find f ???

Ans.
Option A: graphical methods
Option B: bracketing methods
Option C: open methods

This is not practical. Can we automate this somehow?

What information are we using on each sequential 'zoom'?

Bisection Method

Step 1: Make an initial guess of two values that bracket the root: $x 1$, and $\times 2$.

$$
\begin{aligned}
& x 1=0.0 \\
& x 2=2.0
\end{aligned}
$$

(the root is bracketed by $x 1$ and $\times 2$)

Step 2: Estimate the root as half-way between $x 1$ and $x 2$: $x r=(x 1+x 2) / 2$

$$
x r=1.0
$$

Bisection Method

Step 3: Evaluate our answer. If it is good enough, we're done. If not, keep going to step 4.

How do we evaluate whether we've done 'good enough'?

Some prescribed precision in our answer

Bisection Method

Step 4: Compute the product of the function at the lower bound, and at the midpoint: $s=f(x 1)^{\star} f(x r)$

$$
s=(-6.00)^{\star}(-1.85)=11.1
$$

Step 5: Examine the sign of s. There are three options:

1. $s<0 \rightarrow$ the midpoint lies between $x 1$ and $x r$, so set $x 2$ equal to x.

What happens if there is no root between x 1 and x 2 ? Return to step 2.
2. $s>0 \rightarrow$ the midpoint lies between $x r$ and $x 2$, so set $x 1$ equal to $x r$. Return to step 2.
$\left\langle\begin{array}{l}\left.x>0 \quad \begin{array}{l}x 1=1.0 \\ x 2=2.0\end{array}\right)\end{array}\right.$
3. $s=0 \rightarrow$ this is the root, and you are done (unlikely).

Step 6: Return to step 2.

Bisection Method

What do we need to know at the beginning (inputs):

- $f(x)$-- the function we are trying to find the roots of
- Initial guesses for $x 1$ and $\times 2$
- We need to know how good is 'good enough' (an acceptable error)
- A maximum number of iterations in case we get stuck!

What do we want to get out of the program?

- The x-location of the root -- xr
- The error associated with this estimate of $x r$
- The number of iterations we used

What are some of the things our bisection will need to do

- Calculate $f(x)$ for different values of x, many times
- Calculate s and move forward in different ways, depending on the sign
- Assess the error in our estimate of x, and stop when its acceptable to do so

Bisection Method

Here is what our program should look like:

1. Make initial guesses for $x 1$ and $\times 2$
2. Assign $x r$ to be equal to $\times 1$ (why? See step $5 a$)
3. Define an acceptable error in the estimate of xr : Estop $=0.1$
4. Initialize our error estimate to something larger than Estop: $E=$ Estop*2
5. While our error estimate is greater than our acceptable error
A. Assign $x r$ to be the 'old' root estimate (x rOld $=x r$;)
B. Calculate a new $x r$ (midpoint between $x 1$ and $\times 2$)
C. Estimate the error in $x r: E=a b s(x r-x o l d) / x r$
D. Calculate s
E. If $s<0$, set $x 2=x r$; elseif $s>0$, set $x 1=x r$; else stop this iteration

When 5 is complete, $x r$ is our estimate of the midpoint, E is our estimate of the error in xr. If we like, we can keep track of the number of iterations we needed.

Bisection Method

This is a pretty straight forward procedure. What are the downfalls?

- We need two starting guesses - these have to bracket the solution to start with or we'll be in trouble.
- Might not be the most efficient way to find a root - Is the midpoint the best one to choose?

Newton-Raphson Method

Chapra, Figure 6.4

Key Points:

- Starts with only a single point (as opposed to two points for bracketing methods)
- Uses information about the slope of the function (a tangent line) to 'guess' at the true root.

Newton-Raphson Method

Chapra, Figure 6.4

Recall Taylor series:

$$
f\left(x_{i+1}\right) \cong f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)
$$

If x_{i+1} is the root, than $f\left(x_{i+1}\right)=0$. So we can rearrange the equation above as follows:

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

This is the Newton-Raphson formula.
Important: To use the Newton-Raphson formula we need to know $f\left(x_{i}\right)$ and $f^{\prime}\left(x_{i}\right)$ exactly. (this works for functions we know and can take a derivative of).

Newton-Raphson Method Example

$$
\begin{aligned}
& f(x)=e^{-x}-x \\
& f^{\prime}(x)=-e^{-x}-1
\end{aligned}
$$

Newton-Raphson formula.

Iteration	x_{i}	$\|E\| \%$
0	0	-
1	0.500000	11.8
2	0.566311	0.147
.	.	.
.	.	.
.	.	.

Newton-Raphson Method Error

$E_{i+1}=-\frac{f^{\prime \prime}\left(x_{r}\right)}{2 f^{\prime}\left(x_{r}\right)} E_{i}^{2}$

Error in the new estimate ($i+1$) is proportional to the square of the previous error \rightarrow quadratic convergence!

Return to our example: $f(x)=e^{-x}-x$

Secant Method

Question:. What if we
Newton-Raphson formula.

$$
\begin{aligned}
& x_{i+1}=\lambda \\
& \text { at if we } \\
& \text { lerivative? }
\end{aligned}
$$

Answer: Approximate the derivative using a finite backward difference.

$$
f^{\prime}(x) \cong \frac{f\left(x_{i-1}\right)-f\left(x_{i}\right)}{x_{i-1}-x_{i}}
$$

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \cong x_{i}-\frac{f\left(x_{i}\right)\left(x_{i-1}-x_{i}\right)}{\left(f\left(x_{i-1}\right)-f\left(x_{i}\right)\right)}
$$

Secant method

Secant Method

Secant method

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)\left(x_{i-1}-x_{i}\right)}{\left(f\left(x_{i-1}\right)-f\left(x_{i}\right)\right)}
$$

Downside: we now need to points instead of one (although they don't need to bracket the roots)

Suggested Approach: Make $x_{i+1}-x_{i}$ small. (but not so small that roundoff error begins to hurt)

Secant Method Example

Take-home Messages

- Newton-Raphson and Secant methods are useful ways to find roots
- Don't need to bracket the root
- Fast convergence
- If there is a root nearby N -R will converge to that root, but not necessarily the one you want
- Relatively easy to understand
- Function must be differentiable!
- It's always a good idea to try to find a good guess, either by plotting the function, or by looking at a simplified problem first, or from experiment, ...

