Announcements

- Questions re/labs \rightarrow TAs
- Yes, lab02 is due THIS week
- In case of difficulty finishing assignments \rightarrow talk to TA first
- Don't worry about the diary grades. They may show up late, or as a zero if the TA bundles grades.
- First homework \rightarrow next week

A simple example: add 0.1 repeatedly 100,000 times

We know the answer to this: $\quad \sum_{k=1}^{100,000} 0.1=10,000$

This is the answer my computer gave when I used about a number scheme that had about 7 decimal digits of precision:

This is the answer my computer gave when I used about a number scheme that had about 16 decimal digits

$$
\sum_{k=1}^{100,000} 0.1=9,998.556640625
$$ of precision*:

$$
\sum_{k=1}^{100,000} 0.1=10,000.0000000188480000
$$

$10,000.0000000188480000 \neq 10,000$

So what happened?

We do arithmetic using decimal numbers, so this is how we also tend to define our instructions to the computer.

Almost all computers use binary numbers
... 01100011 1000...

We also prefer to get our answers in the number system we are used to (decimal)

Some things are lost in translation.
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.10000000000000001000
0.20000000000000001000
0.30000000000000004000
0.40000000000000002000
0.50000000000000000000
0.59999999999999998000
0.70000000000000007000
0.80000000000000004000
0.90000000000000002000
1.00000000000000000000

A significant digit: one that is known to be correct and reliable

These all have three significant digits:
0.716
. 000716
716
7.16e5

These have four significant digits:
7.160e5
0.7160

This one is tricky (ambiguous):
716000
Has it been rounded?
Is it precise to the nearest 1000?
Is it precise to the nearest 1 ?

Calculations with significant digits

$m=1.1 \mathrm{~kg}, k=4350.3142 \mathrm{~N} / \mathrm{m}$
$f_{o}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}=\underset{\uparrow}{10.008848175944461 \mathrm{~Hz}}$

A general rule:
Stated results should typically be of the same order of magnitude as the uncertainty. That is, we don't use more significant digits than we're sure about.

Important Note:

When doing calculations on the way to an answer, you should normally be using at least one extra significant digit, and rounded at the end for the final answer.

Does this seem reasonable? The least precise data is given with two significant digits, so our answer should be also be given with two significant digits: $f_{o}=10 \mathrm{~Hz}$

Accuracy and Precision
 (error analysis)

Blunders or mistakes:

- Transposed numbers
- wrong units
- incorrect decimal places

Discrepancies or disagreements

- The world is flat. No, its round. (actually, its an oblate spheroid)

Uncertainty

systematic error (bias)
random errors

Not precise

Absolute and relative error

F	C
$120=$	50
100	40
80	30
60	20
	10
	0
20	-10
0	-20
-20	-30
-40 三	-40

Truth: $\quad T_{t}=1^{\circ} \mathrm{C}$
Measurement: $T_{a}=0^{\circ} \mathrm{C}$

True error: $\quad \epsilon=\left|T_{t}-T_{a}\right|$
Relative error: $\quad \eta=\frac{\left|T_{t}-T_{a}\right|}{\left|T_{t}\right|}=\frac{\epsilon}{\left|T_{t}\right|}$
Percent error: $\quad \frac{\epsilon}{\left|T_{t}\right|} \times 100$
Problem: Do we ever know the truth?

Questions for further thought: What is the relative error in the example above if the truth is 10° ? Or 100° ?

What is the relative error if the truth is 0° ?

An example (where we don't know the truth)

Binomial expansion
$(1+x)^{a}=1+a x+\frac{a(a-1)}{2!} x^{2}+\frac{a(a-1)(a-2)}{3!} x^{3}+\frac{a(a-1)(a-2)(a-3)}{4!} x^{3}+\cdots$
$|x|<1, a \neq 0$, real

Compute $1.4^{3.1}$ to within 10% approximate error, using as few terms as possible

First
approx.: $(1+0.4)^{3.1}=1+3.1 * 0.4=2.24$
$\begin{aligned} & \text { Second } \\ & \text { approx.: }\end{aligned}(1+0.4)^{3.1}=1+3.1 * 0.4+\frac{3.1(3.1-1)}{2!} 0.4^{2}=2.76$
$|2.24-2.76| / 2.76=0.19$

Third approx.:

$$
(1+0.4)^{3.1}=1+3.1 * 0.4+\frac{3.1(3.1-1)}{2!} 0.4^{2}+\frac{3.1(3.1-1)(3.1-2)}{3!} 0.4^{3}=2.84
$$

$$
|2.76-2.84| / 2.84=0.028<10 \%
$$

Numbers in Computers

Base-10:

$$
247 \rightarrow 2^{*} 10^{2}+4^{*} 10+7^{*} 10^{0}
$$

Numbers in Computers

signed
8-bit (1-byte) binary numbers can represent these integers:

16-bit (2-byte) binary
numbers can represent these integers:

24-bit (3-byte) binary numbers can represent these integers:
32-bit (4-byte) binary numbers can represent these integers:

64-bit (8-byte) binary numbers can represent these integers:
$-128 \rightarrow 127$
C: char; Fortran:
INTEGER*1
$-32,768 \rightarrow 32,767$
C: short int
Fortran: INTEGER*2

Not used
$-8,388,608 \rightarrow 8,388,607$
$0 \rightarrow 16,777,215$

Fortran: INTEGER, INTEGER*4

$$
0 \rightarrow 65,537
$$

unsigned
$0 \rightarrow 255$

$$
\begin{array}{cc}
\sim+-10^{9} & 0 \rightarrow 4,294,967,295 \\
\mathrm{C}: \text { int } & \text { C: unsigned int }
\end{array}
$$

$$
\begin{array}{cc}
\sim+-10^{18} & 0 \rightarrow \\
\text { C: long int } & 1.84467440737096 \mathrm{e}+19 \\
\text { Fortran: INTEGER*8 } & \text { C: unsigned long int }
\end{array}
$$

Efficiency of Binary Numbers

To access these photos, I need 8 unique numbers using base-10.

But, what if we address these photos using a binary representation of their address?

That's not bad for 8 locations. What is the efficiency for 64,000 locations?

Numbers in Computers

Base-10:

$$
247.13 \rightarrow 2^{*} 10^{2}+4 * 10+7^{*} 10^{0}+1^{*} 10^{-1}+3^{*} 10^{-2}
$$

Octal/Hexadecimal/Base 256

Base-8 (octal):
Group 3 bits in binary: $110010101010 \rightarrow 06252$ or 06252
No digit larger than 7!

Base-16 (hexadecimal):
Group 4 bits in binary: $110010100010 \rightarrow 0 x D A 2$
The digits are now: 0123456789 ABCDEF

Base-256 (IP addresses):

```
Configure IPv4: Using DHCP \hat{ }
    IPv4 Address: 10.21.96.14
    Subnet Mask: 255.255.0.0 DHCP Cl
    Router: 10.21.0.1
```

\rightarrow Integer numbers on a computer have a limited range!
\rightarrow Integer numbers have a constant true error (0.5)!

What can we do if we need larger numbers?

Floating Point Numbers

A floating point number:

Questions:
Can I represent 3.928 with the 'boxes' (or bits) shown above? What is the precision of this floating point number?

Anatomy of a 32-bit (a.k.a. single) Floating Point Number

 sign
 bits

 7 bits for representing the exponent
 23 bits for representing the mantissa

$10^{-39} \rightarrow 10^{38}, \sim 7$ digits of precision

64-bit ('double') floating point number:
11-bit exponent
52-bit mantissa
2 sign

$$
10^{-308} \rightarrow 10^{308}, \sim 16 \text { digits of precision }
$$

64 bit (8-byte) floating point number

IEEE 754 standard, used internally by MATLAB

The real value assumed by a given 64-bit double-precision datum with a given biased exponent e and a 52 -bit fraction is

$$
(-1)^{\mathrm{sign}}\left(1 . b_{51} b_{50} \ldots b_{0}\right)_{2} \times 2^{e-1023}
$$

or

$$
(-1)^{\text {sign }}\left(1+\sum_{i=1}^{52} b_{52-i} 2^{-i}\right) \times 2^{e-1023}
$$

Between $2^{52}=4,503,599,627,370,496$ and $2^{53}=9,007,199,254,740,992$ the representable numbers are exactly the integers. For the next range, from 2^{53} to 2^{54}, everything is multiplied by 2 , so the representable numbers are the even ones, etc. Conversely, for the previous range from 2^{51} to 2^{52}, the spacing is 0.5 , etc.

MATLAB example: very small numbers (de-normalized numbers, gradual underflow

\rightarrow Floating point numbers have a much larger range than integers with the same storage requirement
\rightarrow Floating point numbers have a (more or less) constant relative error (precision)
\rightarrow Only a very limited subset of real numbers can be represented on a computer

Sick cases (usually coding error)

1/0, 2e222^2 \rightarrow Floating point overflow \rightarrow Inf

$2 \mathrm{e}-222^{\wedge} 2 \rightarrow$ Floating point underflow $\rightarrow 0$

$0 / 0 \rightarrow$ Makes no sense $\rightarrow \mathrm{NaN}$

MATLAB example

```
clear all; close all;
% this is a simple matlab script to examine the percent error
% in very small numbers using MATLAB's native doubl precision
% number scheme.
8
% The script examines the difference in the ratio
%
% 1.1 x 10^-exponent
8
% }\quad1.0\times1\mp@subsup{0}{}{\wedge}\mathrm{ -exponent
%
exponent = 300:330;
for i = 1:length (exponent)
    num = 1.1*10^(-exponent(i));
    den = 1.0*10^(-exponent(i));
    x(i) = num/den;
end
perError = 100*abs(x-1.1)/1.1; % this is the percent error
% plot the result in a linear plot (is this hard to see?)
subplot (211)
plot(exponent,perError,'o')
xlabel('exponent')
ylabel('% Error')
% plot the result in a log plot
subplot(212)
semilogy (exponent, perError,'0')
xlabel ('exponent')
ylabel('% Error')
```

Results

Question:

The MATLAB code uses exponents as high as 330 ($10^{\wedge}-330$). Why don't we see this in our plot? What does MATLAB give as a \% error for these high exponents?

Quantization Error

Limitations in precision leads to truncation or rounding Example: audio sampling (16 bit ADC typically)

Return to the first example:

This is the answer my computer gave when I used about a number scheme that had about 7 decimal digits of precision:

$$
\sum_{k=1}^{100,000} 0.1=9,998.556640625
$$

The individual error in precision is small, but because were doing a large number of computations that depend on the results of earlier ones, the error grows large:

How to represent text?

Each character is one byte \rightarrow ascii (American Standard Code for Information
Interchange) table. 0-31 are control characters, 128-255 are extras, some are not
printable.

Dec		x Oct	Char		De		Oct	Html Chr	Dec		x Oct		chr		HX 0	Html Ch	
0		000	NUL	(null)	32	20	040	\&\#32: space	64	440	100	\&\#64;	0	96	60140	\&\#96;	
1	1	001	50H	(start of heading)	33	21	041	\&\#33;	65	51	101	\&\#65;	A	97	61141	\&\#97;	a
2	2	002	STX	(start of text)	34	22	042	\&\#34;	66	642	102	\&\#66;	B	98	62142	\&\#98;	b
3	3	003	ETX	(end of text)	35	23	043	\&\#35; \#	67	743	103	\&\#67;	C	99	63143	\&\#99;	c
4	4	004	E0T	(end of transmission)	36	24	044	\&\#36;	68	44	104	\& 68 $^{\text {\% }}$	D	100	64144	\&\#100;	d
5	5	005	ENQ	(enquiry)	37	25	045	\&\#37; \%	69	45	105	\&\#69;	E	101	65145	\&\#101;	e
6	6	006	ACK	(acknowledge)	38	26	046	\&\#38;	70	46	106	\&\#70;	F	102	66146	\&\#102;	f
7	7	007	BEL	(bell)	39	27	047	\&\#39;	71	147	107	\&\#71;	G	103	$67 \quad 147$	\&\#103;	9
8	8	010	BS	(backspace)	40	28	050	\&\#40;	72	48	110	\&\#72;	H	104	68150	\&\#104;	h
9	9	011	TAB	(horizontal tab)	41	29	051	\&\#41;	73	49	111	\&\#73;	I	105	69151	\&\#105;	i
10	A	012	LF	(NL line feed, new line)	42	2A	052	\&\#42;	74	4 4A	112	\&\#74;	J	106	6A 152	\&\#106;	j
11	B	013	VT	(vertical tab)	43	2B	053	\&\#43	75	54 B	113	\&\#75;	K	107	6B 153	\&\#107	k
12	C	014	FF	(NP form feed, new page)	44	2C	054	\&\#44;	76	6 4C	114	\&\#76;	L	108	6C 154	\&\#108;	1
13	D	015	CR	(carriage return)	45	2D	055	\&\#45;	77	7 4D	115	\&\#77:	M	109	6D 155	\&\#109;	mil
14	E	016	S0	(shift out)	46	2E	056	\&\#46;	78	$8 \mathrm{4E}$	116	\&\#78;	N	110	6 E 156	\&\#110;	n
15	F	017	SI	(shift in)	47	2 F	057	\&\#47;	79	4 F	117	\&\#79;	0	111	6 F 157	\&\#111	0
16	10	020	DLE	(data link escape)	48	30	060	\&\#48; 0	80	50	120	\&\#80;	P	112	70160	\&\#112;	p
17	11	021	DC1	(device control 1)	49	31	061	\&\#49;	81	151	121	\&\#81;	Q	113	71161	\&\#113;	q
18	12	022	DC2	(device control 2)	50	32	062	\&\#50; 2	82	52	122	\&\#82;	R	114	72162	\&\#114;	r
19	13	023	DC3	(device control 3)	51	33	063	\&\#51:3	83	53	123	\&\#83;	5	115	73163	\&\#115;	3
20	14	024	DC4	(device control 4)	52	34	064	\&\#52; 4	84	454	124	\&\#84;	T	116	74164	\&\#116;	t
21	15	025	NAK	(negative acknowledge)	53	35	065	\&\#53; 5	85	55	125	\&\#85;	U	117	75165	\&\#117:	u
22	16	026	SYN	(synchronous idle)	54	36	066	\&\#54; 6	86	56	126	\&\#86;	V	118	76166	\&\#118;	v
23	17	027	ETB	(end of trans. block)	55	37	067	\&\#55; 7	87	75	127	\&\#87:	W	119	77167	\&\#119;	W
24	18	030	CAN	(cancel)	56	38	070	\&\#56; 8	88	88	130	\&\#88;	X	120	78170	\&\#120;	X
25	19	031	EM	(end of medium)	57	39	071	\&\#57; 9	89	59	131	\&\#89;	Y	121	79171	\&\#121;	Y
26	1 A	032	SUB	(substitute)	58	3A	072	\&\#58;	90	5A	132	\&\#90:	Z	122	7A 172	\&\#122;	z
27	1B	033	ESC	(escape)	59	3B	073	\&\#59;	91	1 5B	133	\&\#91;	[123	7B 173	\&\#123;	
28	1 C	034	FS	(file separator)	60	3C	074	\&\#60; <	92	2 5C	134	\&\#92;	\}	124	7C 174	\&\#124;	1
29	1D	035	GS	(group separator)	61	3D	075	\&\#61	93	3 5D	135	\&\#93;	1	125	7D 175	\&\#125;	
30	1 E	036	RS	(record separator)	62	3E	076	\&\#62; >	94	4 5E	136	\&\#94;	人		7E 176	\&\#126;	
31	1 F	037	US	(unit separator)	63	3 F	077	\&\#63; ?	95	5 FF	137	\&\#95;	-	127	7F 177	\&\#127;	DEL

Source: www.Lookup Tables.com

How to represent text and other stuff?

One line of text \rightarrow 'text'<lf> or 'text<cr><|f>
End of file \rightarrow <ctrl>Z (26) only Microsoft
How to store a picture $\rightarrow 3$ bytes per pixel rgbrgbrgb..... Then compress (jpg)
How to store sound \rightarrow 16bit (2byte) samples at $44,200 \mathrm{~Hz} \rightarrow 5304000$ bytes/minute $\rightarrow \sim 100$ minutes on a CDROM (wav file).

Number Representations in Computers

character
'char'
A 1-byte individual character
ASCII Characters:
!"\#\$\% \& () * + , - / 01
$23456789: ;<=>$? @
BCDEFGHIJKLMNOP
QRSTUVWXYZ[\]^_` abcdefghljklmnopq rstuvwxyz\{|\}~

In the MATLAB command window:
>> char(32:126)
integer
int

An integer value
Either signed:
...-5,-4,-3,-2,-1,0,1,2,3,4,...
or unsigned:

$$
0,1,2,3,4,5, \ldots
$$

The number of values that can be represented depends on the number of bytes:

1 byte (unsigned):
$0 \rightarrow 255$
2 byte (short, unsigned): $0 \rightarrow 65,535$
4 byte (long, unsigned):
$0 \rightarrow 4,294,967,296$
floating point point

A floating point value
Single (4 bytes)

- 6-9 significant decimal points
- max value is $\sim 3 \times 10^{38}$

Double (8 bytes)

- 15-17 significant decimal
points
- max value is $\sim 1 \times 10^{308}$

Quadruple (16 bytes)

Reference: Kernighan, B. W., and D. M. Ritchie, The C Programming Language, Second Edition, Prentice-Hall, Inc., 1988.

Unit Systems

Table 1. SI base units
http://physics.nist.gov/Pubs/SP330/sp330.pdf

Base quantity		SI base unit	
Name	Symbol	Name	Symbol
length	l, x, r, etc.	meter	m
mass	m	kilogram	kg
time, duration	t	second	A
electric current	I, i	ampere	A
thermodynamic temperature	T	kelvin	K
amount of substance	n	mole	mol
luminous intensity	I_{v}	candela	cd

Air Canada Flight 143: "Gimli Glider"

TABLE 1.1 SI Units

Quantity	Name of unit	Symbol	Equivalent
Length	Meter	m	
Mass	Kilogram	kg	
Time	Second	s	
Temperature	Kelvin	K	
Frequency	Hertz	Hz	s^{-1}
Force	Newton	N	$\mathrm{kg} \mathrm{ms}^{-2}$
Pressure	Pascal	Pa	$\mathrm{N} \mathrm{m}^{-2}$
Energy	Joule	J	$\mathrm{N} \mathrm{m}^{\text {Power }}$

TABLE 1.2 Common Prefixes

Prefix	Symbol	Multiple
Mega	M	10^{6}
Kilo	k	10^{3}
Deci	d	10^{-1}
Centi	c	10^{-2}
Milli	m	10^{-3}
Micro	μ	10^{-6}

Unit Systems

European scientists estimate that 100 kg of is wasted per person per year.

This is probably accurate to the nearest 50 kg or so, based on the available information in this sentence.

European scientists estimate that 220 lbs of food is wasted per person per year.

This is probably accurate to the nearest 5 lbs or so, based on the available information in this sentence.

Take home message: pay attention to what you are asking your computer, and to what your computer is give you for an answer.

- Significant digits
- Accuracy and precision
- Number systems
- Quantization error

