
Announcements

• Questions	re/labs	à TAs
• Yes,	lab02	is	due	THIS	week
• In	case	of	difficulty	finishing	assignments	à talk	to	
TA	first
• Don’t	worry	about	the	diary	grades.		They	may	
show	up	late,	or	as	a	zero	if	the	TA	bundles	grades.
• First	homework	à next	week



Numbers
• Significant	digits
• Accuracy	and	precision
• Number	systems
• Quantization	error



A	simple	example:	add	0.1	repeatedly	100,000	times

We	know	the	answer	to	this:

This	is	the	answer	my	
computer	gave	when	I	used	
about	a	number	scheme	that	
had	about	7	decimal	digits	of	
precision:

This	is	the	answer	my	
computer	gave	when	I	used	
about	a	number	scheme	that	
had	about	16	decimal	digits	
of	precision*:

*This	is	the	MATLAB	default.



So	what	happened?

We	do	arithmetic	using	
decimal	numbers,	so	this	is	

how	we	also	tend	to	define	our	
instructions	to	the	computer.

Almost	all	computers	use	
binary	numbers

…0110	0011	1000…

We	also	prefer	to	get	our	
answers	in	the	number	system	

we	are	used	to	(decimal)

Some	things	are	lost	in	translation.

0.10000000000000001000
0.20000000000000001000
0.30000000000000004000
0.40000000000000002000
0.50000000000000000000
0.59999999999999998000
0.70000000000000007000
0.80000000000000004000
0.90000000000000002000
1.00000000000000000000

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

‘floating	point’	format
precision



A	significant	digit:	one	that	is	known	to	be	correct	and	reliable

9.1	m9.0	m 9.2	m

the	last	significant	digit
(trailing	digits	are	assumed	to	

be	rounded	off)

Possible	range	of	the	
true	length

9.10	m9.00	m 9.20	m

Possible	range	of	the	
true	length

Precision:	+/-0.05	m

Precision:	+/-0.005	m



These	all	have	three	significant	digits:
0.716
.000716
716
7.16e5

These	have	four	significant	digits:
7.160e5
0.7160

This	one	is	tricky	(ambiguous):
716000 Has	it	been	rounded?

Is	it	precise	to	the	nearest	1000?		
Is	it	precise	to	the	nearest	1?

The	dinosaur	behind	
me	is	about	

100,000,003	years	old



Calculations	with	significant	digits

m
k

x

m=	1.1	kg,	k =	4350.3142	N/m

=10.008848175944461	Hz

Does	this	seem	reasonable?		The	least	precise
data	is	given	with	two	significant	digits,	so	our	
answer	should	be	also	be	given	with	two	
significant	digits:		fo=10	Hz

A	general	rule:
Stated	results	should	typically	be	of	
the	same	order	of	magnitude	as	the	
uncertainty.		That	is,	we	don’t	use	
more	significant	digits	than	we’re	sure	
about.

Important	Note:
When	doing	calculations	on	the	way	
to	an	answer,	you	should	normally	be	
using	at	least	one	extra	significant	
digit,	and	rounded	at	the	end	for	the	
final	answer.



Accuracy	and	Precision
(error	analysis)

Blunders or	mistakes:
• Transposed	numbers
• wrong	units
• incorrect	decimal	places

Discrepancies or	disagreements
• The	world	is	flat.		No,	its	round.
(actually,	its	an	oblate	spheroid)

Uncertainty

systematic	error	(bias) random	errors

Air	Canada	Flight	143:	
“Gimli Glider”

A	blunder:		
Incorrect	unit	
conversion:	needed	
22,300	kg	of	fuel	
and	got	22,300	
pounds	(10,100	kg)

Accurate
Not	precise

Inaccurate
Precise

Accurate
Precise

Inaccurate
Not	precise



Absolute	and	relative	error

Truth:		 Tt =	1°C
Measurement:		Ta =	0°C	

True	error:

Relative	error:

Percent	error:

1°

1

Questions	for	further	thought:		
What	is	the	relative	error	in	the	example	
above	if	the	truth	is	10°?		Or	100	°?

What	is	the	relative	error	if	the	truth	is	0°?

Problem:		Do	we	ever	know	the	truth?



An	example	(where	we	don’t	know	the	truth)

Binomial	expansion

Compute	1.43.1 to	within	10%	approximate	error,	using	as	few	terms	as	possible

First	
approx.:

Second	
approx.:

Third	
approx.:

=	2.24

=	2.76

|2.24-2.76|/2.76	=	0.19
>	10%	

=	2.84

|2.76-2.84|/2.84	=	0.028	<	10%	



Numbers	in	Computers

Base-10:

247			à 2*102 +	4*10	+	7*100

Base-2:

247 à 1*27 +	1*26 +	1*25 +	1*24 +	0*23 +	1*22 +	1*21 +	1*20

(128	+	64	+	32	+	16	+	0	+	4	+	2	+	1)

11110111

These	are	bits.		8	bits	=	1	byte.Lots	of	switches	
(transistor)



Numbers	in	Computers
signed unsigned

8-bit	(1-byte)	binary	
numbers	can	represent	

these	integers:

-128	à 127
C:	char;	Fortran:	

INTEGER*1

0à255

16-bit	(2-byte)	binary	
numbers	can	represent	

these	integers:

-32,768	à 32,767
C:	short	int

Fortran:	INTEGER*2

0à65,537

24-bit	(3-byte)	binary	
numbers	can	represent	

these	integers:

-8,388,608	à 8,388,607
Not	used

0à 16,777,215

32-bit	(4-byte)	binary	
numbers	can	represent	

these	integers:

~+-109
C:	int

Fortran:		INTEGER,	INTEGER*4

0à 4,294,967,295
C:	unsigned int

64-bit	(8-byte)	binary	
numbers	can	represent	

these	integers:

~+-1018
C:	long	int

Fortran:		INTEGER*8

0à
1.84467440737096e+19
C:	unsigned	long	int



Efficiency	of	Binary	Numbers

1 72 3 4 5 6 8

To	access	these	photos,	I	need	8	unique	numbers	using	base-10.

But,	what	if	we	address	these	photos	using	a	binary	representation	of	their	
address?

+1+2+4

xThe	
address	for	
picture	5:

x

That’s	not	bad for	8	locations.		What	is	the	efficiency	for	64,000	locations?

3	unique	‘slots’



Numbers	in	Computers

Base-10:

247.13			à 2*102 +	4*10	+	7*100 +	1*10-1 +	3*10-2

Base-2:
247		à 1111	0111

Lots	of	switches	
(transistor)

247.13	à ???



Octal/Hexadecimal/Base	256
Base-8	(octal):
Group	3	bits	in	binary:		110	010	101	010	à o6252	or	06252
No	digit	larger	than	7!

Group	4	bits	in	binary:		1100	1010	0010	à 0xDA2
The	digits	are	now:		0123456789ABCDEF

Base-16	(hexadecimal):

Base-256	(IP	addresses):



à Integer	numbers	on	a	
computer	have	a	limited	range!

What	can	we	do	if	we	need	larger	
numbers?

à Integer	numbers	have	a	
constant	true	error	(0.5)!



Floating	Point	Numbers

A	floating	point	number: 3.928	=	3928	x	10-3

mantissa

exponent

Sign	of	mantissa
+/-

Sign	of	exponent
+/- Bits	for	exponent Bits	for	mantissa

Questions:	
Can	I	represent	3.928	with	the	‘boxes’	(or	bits)	shown	above?		
What	is	the	precision	of	this	floating	point	number?

0	(LSB)8	(MSB) 1234567

base



Anatomy	of	a	32-bit	(a.k.a.	single)	
Floating	Point	Number

23	bits	for	representing	the	mantissa7	bits	for	
representing	
the	exponent

2	
sign	
bits

Range	of	exponents:	0	à 27-1

Range	of	mantissa:	0	à 223-1
10-39 à 1038,		~	7	digits	of	precision

64-bit	(‘double’)	floating	point	number:

10-308 à 10308,		~	16	digits	of	precision
11-bit	exponent
52-bit	mantissa
2	sign



64	bit	(8-byte)	floating	point	number
IEEE	754	standard,	used	internally	by	MATLAB



Starting	
to	loose	
precision

Poor	precision	
(not	16	digits!)

MATLAB	example:	very	small	numbers
(de-normalized	numbers,	gradual	underflow

Very	poor	precision	
(not	16	digits!)



à Floating	point	numbers	have	a	
much	larger	range	than	integers	

with	the	same	storage	requirement

à Floating	point	numbers	have	a	
(more	or	less)	constant	relative	

error	(precision)

à Only	a	very	limited	subset	of	
real	numbers	can	be	represented	

on	a	computer



Sick	cases	(usually	coding	error)

1/0,	2e222^2	à Floating	point	
overflow		à Inf

2e-222^2à Floating	point	
underflow		à 0

0/0	à Makes	no	sense	à NaN



MATLAB	example

Question:	
The	MATLAB	code	uses	exponents	as	high	as	330	
(10^-330).		Why	don’t	we	see	this	in	our	plot?		What	
does	MATLAB	give	as	a	%	error	for	these	high	
exponents?	

Results



Quantization	Error
Limitations	in	precision	leads	to	truncation	or	rounding

Example:		audio	sampling	(16	bit	ADC	typically)
22 possible	numbers 24 possible	numbers 28 possible	numbers

Digital	representation

‘truth’

Rounding	error



This	is	the	answer	my	
computer	gave	when	I	used	
about	a	number	scheme	that	
had	about	7	decimal	digits	of	
precision:

Return	to	the	first	example:

The	individual	error	in	precision	is	small,	but	because	were	doing	a	large	number	of	
computations	that	depend	on	the	results	of	earlier	ones,	the	error	grows	large:

This	is	the	8th decimal	place



How	to	represent	text?
Each	character	is	one	byte	à ascii (American	Standard	Code	for	Information	
Interchange)	table.		0-31	are	control	characters,	128-255	are	extras,	some	are	not	
printable.



How	to	represent	text	and	other	stuff?
One	line	of	text	à ‘text’<lf>	or	‘text<cr><lf>

End	of	file	à <ctrl>Z	(26)		only	Microsoft

How	to	store	a	picture	à 3	bytes	per	pixel	rgbrgbrgb…..		Then	compress	(jpg)

How	to	store	sound	à 16bit	(2byte)	samples	at	44,200	Hz	à 5304000	
bytes/minute		à ~100	minutes	on	a	CDROM	(wav	file).



Reference:		Kernighan,	B.	W.,	and	D.	M.	Ritchie, The	C	Programming	Language,	Second	Edition,	Prentice-Hall,	Inc.,	1988.

character
‘char’

integer
int

floating	point
point

A	1-byte	individual	character

ASCII	Characters:
!	“	#	$	%	&	‘	(	)	*	+	,		- .	/	0	1	
2	3	4	5	6	7	8	9	:	;	<	=	>	?	@	A	
B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	
Q	R	S	T	U	V	W	X	Y	Z	[	\ ]	^	_	`	
a	b	c	d	e	f	g	h	I	j	k	l	m	n	o	p	q	
r	s	t	u	v	w	x	y	z	{	|	}	~	

In	the	MATLAB	command	
window:
>>	char(32:126)

An	integer	value

Either	signed:
…-5,-4,-3,-2,-1,0,1,2,3,4,…

or	unsigned:
0,1,2,3,4,5,…

The	number	of	values	that	
can	be	represented	depends	
on	the	number	of	bytes:
1	byte	(unsigned):		

0à255	
2	byte	(short,	unsigned):	

0à65,535	
4	byte	(long,	unsigned):	

0à4,294,967,296

A	floating	point	value

Single	(4	bytes)
• 6-9	significant	decimal	
points
• max	value	is	~3x1038

Double	(8	bytes)
• 15-17	significant	decimal	
points
• max	value	is	~1x10308

Quadruple	(16	bytes)

Number	Representations	in	Computers



Unit	Systems
http://physics.nist.gov/Pubs/SP330/sp330.pdf

From	Kundu and	Cohen,	Fluid	Mechanics.

Air	Canada	Flight	143:	“Gimli Glider”



Unit	Systems

European	scientists	
estimate	that	100	kg	of	
is	wasted	per	person	
per	year.

Unit	conversion:	
1	kg	=	2.2	lbs

European	scientists	estimate	
that	220	lbs of	food	is	wasted	
per	person	per	year.		

This	is	probably	accurate	to	
the	nearest	50	kg	or	so,	
based	on	the	available	

information	in	this	sentence.

This	is	probably	accurate	to	
the	nearest	5	lbs or	so,	based	
on	the	available	information	

in	this	sentence.

A	better	way	to	say	this:	European	scientists	estimate	that	100	kg	(about	220	lbs)	of	food	is	wasted…



Take	home	message:	pay	attention	to	what	you	are	asking	
your	computer,	and	to	what	your	computer	is	give	you	for	an	
answer.	
• Significant	digits
• Accuracy	and	precision
• Number	systems
• Quantization	error


