IAM 550 Introduction to Engineering Computing
Computer Lab 5
Newton-Raphson root finding
J. Raeder, October 1/3

Objectives:

This week you will be working on calculating an acceptable bungee jumper mass under prescribed conditions using the Newton-Raphson method. In doing so, you will need to

- Use the Newton-Raphson method to find the roots of an equation
- Work on your approach to solving engineering problems
- Employ a MATLAB while loops
- Continue to practice writing MATLAB scripts.

Deliverables due at the end of your lab session:

A MATLAB diary for your laboratory session (25% of your laboratory grade). This should be submitted via blackboard as an assignment no later than 2 days after your lab.

Deliverables due at the beginning of your next lab session (October 8 or 10):

A lab report summarizing your results and answering any questions asked in the lab instructions, and including any MATLAB files that have been requested. Make sure your name is on all pages of your lab report.

Background:

You are acting as a consultant for a bungee jumping company who is concerned with the potential for spinal injuries in jumpers who reach velocities during the free fall that are too high. This company has set a safety metric whereby they require that a jumper cannot exceed a velocity of $19.0 \mathrm{~m} / \mathrm{s}$ after a 2.00 second freefall. They are asking you to find the mass at which this metric is exceeded.

You know that a jumper should be experiencing acceleration due to gravity as well as a drag force which will depend on both the jumper's cross-sectional area and the density of air. Based on this knowledge, you come up with an equation that describes the jumper velocity v as a function of time t :
$v(t)=\sqrt{\frac{g m}{c_{d}}} \tanh \left(\sqrt{\frac{g c_{d}}{m}} t\right)$
Eq. 1
where $\tanh ()$ is the hyperbolic tangent (tanh in MATLAB), g is the acceleration due to gravity $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$, c_{d} is a drag coefficient that accounts for both the jumper shape and the density of air, and m is the mass of the jumper.

After extensive testing the bungee jumping company is confident that a drag coefficient of $c_{d}=0.250$ kg / m is a safe estimate for most jumpers, but because Eq. 1 is a transcendental equation they cannot solve for the mass explicitly and are unsure what jumper mass will yield a velocity of $19.0 \mathrm{~m} / \mathrm{s}$ after 2.00 seconds. The bungee jumping company wishes to know this mass to the nearest 0.1 kg .

Task 1 of 1

Write a MATLAB script that uses the Newton-Raphson method to solve for the mass m at which $v(t=2.00$ seconds $)=19.0 \mathrm{~m} / \mathrm{s}$ using Eq. 1 (or a re-arranged version of it). Note that in solving this problem, you will need to know the derivative of $\sqrt{\frac{g m}{c_{d}}} \tanh \left(\sqrt{\frac{g c_{d}}{m}} t\right)$ with respect to the mass, m. To make this a bit easier for a 1 h lab we provide it here:

$$
\begin{equation*}
\frac{d}{d m}\left(\sqrt{\frac{g m}{c_{d}}} \tanh \left(\sqrt{\frac{g c_{d}}{m}} t\right)\right)=\frac{1}{2} \sqrt{\frac{g}{m c_{d}}} \tanh \left(\sqrt{\frac{g c_{d}}{m}} t\right)-\frac{g t}{2 m} \operatorname{sech}^{2}\left(\sqrt{\frac{g c_{d}}{m}} t\right) \tag{Eq. 2}
\end{equation*}
$$

Use inline functions as shown in class. You can use the bisection code shown in class as a starting point. Make sure you check your value for the mass in Eq. 1 at a time of two seconds. After you solve for the mass, evaluate and plot the velocity of the jumper at times between 0 and 10 seconds with a time increment of 10 milliseconds. Provide your script and the plot as an appendix to your lab report.

Don't forget to submit your diary file.

